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Atomic Durability

➢ A group of updates are written to PM in an all or nothing manner

➢ Current 64-bit CPUs only support 8B atomic write[1-3]
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• Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

➢ Benefits
• Write reduction: Don’t write logs to PM in common cases

• No ordering constraints: Don’t wait for flushing logs (and cachelines) to the log (and data) regions
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B = B0
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Tx_end
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① Flush-bit in log is 1. CE updates the data region
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③ LU writes the data region. CE will not write twice*

LU (at txn commit)

CE

* By using bit-level write reduction schemes, e.g., DCW@ISCA’09

①

②

③

On-PM Buffer

Cachelines
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

Physical Media

PM

❶W1 → ❷W1, W2 → ❸W1Low4B|W3Low4B, W3High4B|W2High4B

❹W4 → ❺W4, W5

Cachelines      ❻W6      Cachelines… …



Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases



Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot 
hold all logs in one txn 

Flush undo logs to
ensure atomicity



Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot 
hold all logs in one txn 

Log bufferU+R logn+1

PM

Flush undo logs to
ensure atomicity

Oldn

Old1

…
Newn

New1

…



Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot 
hold all logs in one txn 

Log bufferU+R logn+1

PM

Ulog1

Flush undo logs to
ensure atomicity

Oldn

Old1

…
Newn

New1

…



Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot 
hold all logs in one txn 

Log bufferU+R logn+1

PM

Flush-bit = 0 

Ulog1 Data1

Flush undo logs to
ensure atomicity

Oldn

Old1

…
Newn

New1

…



Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot 
hold all logs in one txn 

Log bufferU+R logn+1

PM

Flush-bit = 0 

Ulog1 Data1

In parallel

Flush undo logs to
ensure atomicity

Oldn

Old1

…
Newn

New1

…



Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot 
hold all logs in one txn 

A system crash or 
power failure occurs

Log bufferU+R logn+1

PM

Flush-bit = 0 

Ulog1 Data1

In parallel

PM

Flush undo logs to
ensure atomicity

Selectively flush 
logs on demand

Oldn

Old1

…
Newn

New1

…
Oldn

Old1

…
Newn

New1

…



Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot 
hold all logs in one txn 

A system crash or 
power failure occurs

Log bufferU+R logn+1

PM

Flush-bit = 0 

Ulog1 Data1

In parallel

PM

Uncommitted txns
• Undo logs

Flush undo logs to
ensure atomicity

Selectively flush 
logs on demand

Atomicity

Ulogs

Oldn

Old1

…
Newn

New1

…
Oldn

Old1

…
Newn

New1

…



Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot 
hold all logs in one txn 

A system crash or 
power failure occurs

Log bufferU+R logn+1

PM

Flush-bit = 0 

Ulog1 Data1

In parallel

PM

Uncommitted txns
• Undo logs

Flush undo logs to
ensure atomicity

Selectively flush 
logs on demand

Atomicity

Durability

Ulogs Rlogs

Oldn

Old1

…
Newn

New1

…
Oldn

Old1

…
Newn

New1

…

Committed txns
• Redo logs (flush-bit = 0)



Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot 
hold all logs in one txn 

A system crash or 
power failure occurs

Log bufferU+R logn+1

PM

Flush-bit = 0 

Ulog1 Data1

In parallel

PM

Uncommitted txns
• Undo logs
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Flush undo logs to
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Selectively flush 
logs on demand

Atomicity

Durability

Ulogs Rlogs
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Committed txns
• Redo logs (flush-bit = 0)
• Replay

Recoverability



Evaluation

➢ Comparisons
• Base: A hardware logging baseline

• FWB[2]: The hardware logging design of FWB

• MorLog[3]: The morphable hardware logging

• LAD[4]: The logless atomic durability design

• Silo: Our speculative logging design

15

Processor

Cores 8 cores, x86-64, 2 GHz

L1 I/D Private, 64B per line, 32KB, 8-way, 4 cycles

L2 Private, 64B per line, 256KB, 8-way, 12 cycles

LLC Shared, 64B per line, 8MB, 16-way, 28 cycles

Mem Ctrl FRFCFS, 64-entry queue in ADR domain

Log Buffer 680B per core, FIFO, 8 cycles, battery-backed

Persistent Memory

Capacity 16GB phase-change memory

Latency Read / Write: 50 / 150 ns[1]

Gem5 Simulation

[1] HOOP@ISCA’20     [2] FWB@HPCA’18        [3] MorLog@ISCA’20     [4] LAD@MICRO’19

➢ Benchmarks
• Micro-benchmarks

• Array, Btree, Hash, Queue, RBtree

• Macro-benchmarks
• TPCC, YCSB
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L1 → LLC → MC
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Write logs and cachelines
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Write logs and cachelines

Silo reduces write traffic by 76.5% over existing hardware logging designs

Logs are used to update data

Do not produce logsWrite coalescing

Our workOur work

Silo exhibits approximate write traffic with LAD
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Smaller than
[eADR] 888.2x; 91.6x
[BBB] 3.2x; 2.1x



➢ Handle large transactions
• Log overflow occurs

• Throughput decreases by only 7.4%

➢ Change latency of log buffer
• A 128-cycle log buffer only decreases 

the throughput by 3.3% over an 8-cycle one

More Results

19

Find more details in our paper!



Conclusion

➢ Ensuring atomic durability becomes important for PM

20



Conclusion

➢ Ensuring atomic durability becomes important for PM

➢ Prior hardware logging studies: Log as Backup
• Heavy writes to PM

• Ordering constraints between persisting logs and data

20



Conclusion

➢ Ensuring atomic durability becomes important for PM

➢ Prior hardware logging studies: Log as Backup
• Heavy writes to PM

• Ordering constraints between persisting logs and data

➢ We propose a speculative logging design Silo: Log as Data
• Use on-chip logs to in-place update data (Make common case fast)

• Write logs to back up data in rare cases (Guarantee recoverability)

20



Conclusion

➢ Ensuring atomic durability becomes important for PM

➢ Prior hardware logging studies: Log as Backup
• Heavy writes to PM

• Ordering constraints between persisting logs and data

➢ We propose a speculative logging design Silo: Log as Data
• Use on-chip logs to in-place update data (Make common case fast)

• Write logs to back up data in rare cases (Guarantee recoverability)

➢ Benefits

• Improve transaction throughput

• Reduce write traffic to PM

• Low hardware overhead
20



Thank you!


