
Silo: Speculative Hardware Logging for
Atomic Durability in Persistent Memory

Ming Zhang, Yu Hua

Huazhong University of Science and Technology, China

29th IEEE International Symposium on High-Performance Computer Architecture (HPCA), 2023

Persistent Memory (PM)

2

CPU

DRAM

DISK

Traditional hierarchy

DDR

SATA/NVMe

Persistent Memory (PM)

2

CPU

DRAM

DISK

Fast byte access

Volatile

Traditional hierarchy

DDR

SATA/NVMe

Persistent Memory (PM)

2

CPU

DRAM

DISK

Fast byte access

Volatile

Slow block access

Persistent

Traditional hierarchy

DDR

SATA/NVMe

Persistent Memory (PM)

2

CPU

DRAM

DISK

CPU

DRAM PM
Fast byte access

Volatile

Slow block access

Persistent

Fast byte access

Persistent

…

Traditional hierarchy

DDR DDR

SATA/NVMe

Emerging hierarchy

Persistent Memory (PM)

2

CPU

DRAM

DISK

CPU

DRAM PM
Fast byte access

Volatile

Slow block access

Persistent

Fast byte access

Persistent

…

Traditional hierarchy

DDR DDR

SATA/NVMe

Data are not lost
➔Ensure atomic durability

for data consistency

Emerging hierarchy

Atomic Durability

➢ A group of updates are written to PM in an all or nothing manner

➢ Current 64-bit CPUs only support 8B atomic write[1-3]

3
[1] Fast&Fair@FAST’18 [2] Level Hashing@OSDI’18 [3] Recipe@SOSP’19

Atomic Durability

➢ A group of updates are written to PM in an all or nothing manner

➢ Current 64-bit CPUs only support 8B atomic write[1-3]

3

PM

A B
$100 A: 500

B: 500

A: 400

B: 600

[1] Fast&Fair@FAST’18 [2] Level Hashing@OSDI’18 [3] Recipe@SOSP’19

Atomic Durability

➢ A group of updates are written to PM in an all or nothing manner

➢ Current 64-bit CPUs only support 8B atomic write[1-3]

3

PM

A B
$100 A: 500

B: 500

A: 400

B: 600

PM

A B
$100 A: 500

B: 500

A: 400

B: 500

Partial updates![1] Fast&Fair@FAST’18 [2] Level Hashing@OSDI’18 [3] Recipe@SOSP’19

Write-Ahead Logging in Transaction

➢ Back-up data before updates to ensure atomic durability

4

A

B

$100

PM

Log Region

Data Region

Tx_begin

create Log A, B

write Log A, B

flush LogA

flush LogB

sfence

A = A – 100

B = B + 100

flush A

flush B

sfence

Tx_end

Transaction

Write-Ahead Logging in Transaction

➢ Back-up data before updates to ensure atomic durability

4

A

B

$100

PM

Log Region

Data Region

A: 500 B: 500

Tx_begin

create Log A, B

write Log A, B

flush LogA

flush LogB

sfence

A = A – 100

B = B + 100

flush A

flush B

sfence

Tx_end

Transaction

Write-Ahead Logging in Transaction

➢ Back-up data before updates to ensure atomic durability

4

A

B

$100

PM

Log Region

Data Region

A: 500 B: 500

A: 400 B: 600

Tx_begin

create Log A, B

write Log A, B

flush LogA

flush LogB

sfence

A = A – 100

B = B + 100

flush A

flush B

sfence

Tx_end

Transaction

Write-Ahead Logging in Transaction

➢ Back-up data before updates to ensure atomic durability

4

A

B

$100

PM

Log Region

Data Region

A: 500 B: 500

A: 400 B: 600

Tx_begin

create Log A, B

write Log A, B

flush LogA

flush LogB

sfence

A = A – 100

B = B + 100

flush A

flush B

sfence

Tx_end

Transaction

Write-Ahead Logging in Transaction

➢ Back-up data before updates to ensure atomic durability

5

A

B

$100

PM

Log Region

Data Region

A: 500 B: 500

A: 500 B: 500

Tx_begin

create Log A, B

write Log A, B

flush LogA

flush LogB

sfence

A = A – 100

B = B + 100

flush A

flush B

sfence

Tx_end

Transaction

Hardware Logging

6

Tx_begin

create Log

write Log

flush Log

sfence

write data

flush data

sfence

Tx_end

Hardware Logging

6

Software Logging

Log operations exist on the critical path

[1] ATOM@HPCA’17

Throughput decreases by up to 70%[1]

Tx_begin

create Log

write Log

flush Log

sfence

write data

flush data

sfence

Tx_end

Hardware Logging

6

Tx_begin

write data

Tx_end

Software Logging Hardware Logging

Log operations exist on the critical path

[1] ATOM@HPCA’17

Throughput decreases by up to 70%[1]

Tx_begin

create Log

write Log

flush Log

sfence

write data

flush data

sfence

Tx_end

Hardware Logging

6

Tx_begin

write data

Tx_end

Software Logging Hardware Logging

Log operations exist on the critical path

[1] ATOM@HPCA’17

Offload logging
operations to

hardware

✓ Better performance
✓ Easy programming

Throughput decreases by up to 70%[1]

Mem Ctrl

Data Log
PM

Log GenCache

State-of-The-Art

7

State-of-The-Art

7

ATOM@HPCA’17
FWB@HPCA’18

MorLog@ISCA’20
ASAP@ISCA’22

Mem Ctrl

Data Log

PM

Log GenCache

State-of-The-Art

7

ATOM@HPCA’17
FWB@HPCA’18

MorLog@ISCA’20
ASAP@ISCA’22

WrAP@HPCA’16

Mem Ctrl

Data Log

PM

Log GenCache

Mem Ctrl

Data
PM

Log GenCache

Log

State-of-The-Art

7

ATOM@HPCA’17
FWB@HPCA’18

MorLog@ISCA’20
ASAP@ISCA’22

WrAP@HPCA’16

ReDU@MICRO’18

Mem Ctrl

Data Log

PM

Log GenCache

Mem Ctrl

Data
PM

Log GenCache

Log

Mem Ctrl

Data LogPM

Log GenCache

DRAM

State-of-The-Art

7

ATOM@HPCA’17
FWB@HPCA’18

MorLog@ISCA’20
ASAP@ISCA’22

WrAP@HPCA’16

ReDU@MICRO’18 Proteus@MICRO’17

Mem Ctrl

Data Log

PM

Log GenCache

Mem Ctrl

Data Log

PM

Log GenCache

Mem Ctrl

Data
PM

Log GenCache

Log

Mem Ctrl

Data LogPM

Log GenCache

DRAM

queue

last one

State-of-The-Art

7

ATOM@HPCA’17
FWB@HPCA’18

MorLog@ISCA’20
ASAP@ISCA’22

WrAP@HPCA’16

ReDU@MICRO’18 Proteus@MICRO’17

Mem Ctrl

Data Log

PM

Log GenCache

Mem Ctrl

Data Log

PM

Log GenCache

Mem Ctrl

Data
PM

Log GenCache

Log

Mem Ctrl

Data LogPM

Log GenCache

DRAM

Log as backup

queue

last one

Challenges

Heavy Writes

8

Ordering Constraints

Tx_begin

write A

write B

Tx_end

Challenges

Heavy Writes

8

A: 400
B: 600

A: 500
B: 500

PM

2-3x
writes

Ordering Constraints

Data Log

Tx_begin

write A

write B

Tx_end

Challenges

Heavy Writes

8

A: 400
B: 600

A: 500
B: 500

PM

2-3x
writes

Ordering Constraints

Logging supports to recover
data from a system crash,
but increases the write traffic

Data Log

Tx_begin

write A

write B

Tx_end

Challenges

Heavy Writes

8

A: 400
B: 600

A: 500
B: 500

PM

2-3x
writes

Ordering Constraints

Logging supports to recover
data from a system crash,
but increases the write traffic

➔ Exacerbate PM endurance

Data Log

Tx_begin

write A

write B

Tx_end

Challenges

Heavy Writes

8

A: 400
B: 600

A: 500
B: 500

PM

2-3x
writes

Ordering Constraints

Logging supports to recover
data from a system crash,
but increases the write traffic

➔ Exacerbate PM endurance

Data Log

Tx_begin

write A

write B

Tx_end

Persist

Challenges

Heavy Writes

8

A: 400
B: 600

A: 500
B: 500

PM

2-3x
writes

Ordering Constraints

Logging supports to recover
data from a system crash,
but increases the write traffic

➔ Exacerbate PM endurance

Data Log

Tx_begin

write A

write B

Tx_end

ULogA ULogB
DataA DataB Commit

Time

Hardware undo

Persist

Challenges

Heavy Writes

8

A: 400
B: 600

A: 500
B: 500

PM

2-3x
writes

Ordering Constraints

Logging supports to recover
data from a system crash,
but increases the write traffic

➔ Exacerbate PM endurance

Data Log

Tx_begin

write A

write B

Tx_end

ULogA ULogB
DataA DataB

RLogA RLogB
DataA DataB

Commit

Commit

Time

Time

Hardware undo

Hardware redo

Persist

Challenges

Heavy Writes

8

A: 400
B: 600

A: 500
B: 500

PM

2-3x
writes

Ordering Constraints

Logging supports to recover
data from a system crash,
but increases the write traffic

➔ Exacerbate PM endurance

Data Log

Tx_begin

write A

write B

Tx_end

ULogA ULogB
DataA DataB

RLogA RLogB
DataA DataB

URLogA URLogB
DataA DataB

Commit

Commit

Commit

Time

Time

Hardware undo

Hardware redo

Hardware undo+redo

Persist

Challenges

Heavy Writes

8

A: 400
B: 600

A: 500
B: 500

PM

2-3x
writes

Ordering Constraints

Logging supports to recover
data from a system crash,
but increases the write traffic

➔ Exacerbate PM endurance

Data Log

Tx_begin

write A

write B

Tx_end

ULogA ULogB
DataA DataB

RLogA RLogB
DataA DataB

URLogA URLogB
DataA DataB

Commit

Commit

Commit

Time

Time

Hardware undo

Hardware redo

Hardware undo+redo

• FWB[1] writes logs to PM before the updated data for each write
• MorLog[2] flushes logs to PM before commit to ensure durability

[1] FWB@HPCA’18 [2] MorLog@ISCA’20

Persist

Challenges

Heavy Writes

8

A: 400
B: 600

A: 500
B: 500

PM

2-3x
writes

Ordering Constraints

Logging supports to recover
data from a system crash,
but increases the write traffic

➔ Exacerbate PM endurance

Data Log

Tx_begin

write A

write B

Tx_end

ULogA ULogB
DataA DataB

RLogA RLogB
DataA DataB

URLogA URLogB
DataA DataB

Commit

Commit

Commit

Time

Time

Hardware undo

Hardware redo

Hardware undo+redo

➔ Increase latency

• FWB[1] writes logs to PM before the updated data for each write
• MorLog[2] flushes logs to PM before commit to ensure durability

[1] FWB@HPCA’18 [2] MorLog@ISCA’20

Key Ideas

9

Key Ideas

➢ Speculative Logging
• Crash is rare for a single machine[1-2]

➔ Do not conservatively write logs to PM in
common cases (no failures)

➔ Only write logs to PM in rare cases (e.g.,
crashes) to guarantee atomic durability

9
[1] Lazy Persistency@ISCA’18 [2] LAD@MICRO’19

Key Ideas

➢ Speculative Logging
• Crash is rare for a single machine[1-2]

➔ Do not conservatively write logs to PM in
common cases (no failures)

➔ Only write logs to PM in rare cases (e.g.,
crashes) to guarantee atomic durability

9
[1] Lazy Persistency@ISCA’18 [2] LAD@MICRO’19

➢ Log as Data
• Logs are able to record the new data

➔ Use on-chip logs to in-place update the PM
data after commit in common cases

Key Ideas

➢ Speculative Logging
• Crash is rare for a single machine[1-2]

➔ Do not conservatively write logs to PM in
common cases (no failures)

➔ Only write logs to PM in rare cases (e.g.,
crashes) to guarantee atomic durability

9
[1] Lazy Persistency@ISCA’18 [2] LAD@MICRO’19

Log
Data region

Log region

Common case

Rare case

On chip
In PM

➢ Log as Data
• Logs are able to record the new data

➔ Use on-chip logs to in-place update the PM
data after commit in common cases

Key Ideas

➢ Speculative Logging
• Crash is rare for a single machine[1-2]

➔ Do not conservatively write logs to PM in
common cases (no failures)

➔ Only write logs to PM in rare cases (e.g.,
crashes) to guarantee atomic durability

9

Mem Ctrl

Data Log

PM

Log GenCache

Log as data

[1] Lazy Persistency@ISCA’18 [2] LAD@MICRO’19

Log
Data region

Log region

Common case

Rare case

On chip
In PM

➢ Log as Data
• Logs are able to record the new data

➔ Use on-chip logs to in-place update the PM
data after commit in common cases

Key Ideas

➢ Speculative Logging
• Crash is rare for a single machine[1-2]

➔ Do not conservatively write logs to PM in
common cases (no failures)

➔ Only write logs to PM in rare cases (e.g.,
crashes) to guarantee atomic durability

9

Mem Ctrl

Data Log

PM

Log GenCache

Log as data

[1] Lazy Persistency@ISCA’18 [2] LAD@MICRO’19

Make the common case fast

and guarantee recoverability

Log
Data region

Log region

Common case

Rare case

On chip
In PM

➢ Log as Data
• Logs are able to record the new data

➔ Use on-chip logs to in-place update the PM
data after commit in common cases

Silo: Speculative Hardware Logging

10

Memory Controller

Last Level Cache

L1 Log Generator

Core

L1...

...

Write Pending
Queue

Log Buffer

New data in logs

Log Entry

Persistent Memory

Processor

Core

Log Controller

......

Logs
in rare
cases

Cachelines

Data Region

Log Region

Architecture

Silo: Speculative Hardware Logging

10

Memory Controller

Last Level Cache

L1 Log Generator

Core

L1...

...

Write Pending
Queue

Log Buffer

New data in logs

Log Entry

Persistent Memory

Processor

Core

Log Controller

......

Logs
in rare
cases

Cachelines

Data Region

Log Region

Architecture Monitor L1D updates during txns and generate log entries

Silo: Speculative Hardware Logging

10

Memory Controller

Last Level Cache

L1 Log Generator

Core

L1...

...

Write Pending
Queue

Log Buffer

New data in logs

Log Entry

Persistent Memory

Processor

Core

Log Controller

......

Logs
in rare
cases

Cachelines

Data Region

Log Region

Architecture Monitor L1D updates during txns and generate log entries

Flush-bit
8 bits 1 word16 bits 48 bits1 bit 1 word

Log Metadata Log Data

TID TxID Addr Old Data New Data Undo+Redo

Silo: Speculative Hardware Logging

10

Memory Controller

Last Level Cache

L1 Log Generator

Core

L1...

...

Write Pending
Queue

Log Buffer

New data in logs

Log Entry

Persistent Memory

Processor

Core

Log Controller

......

Logs
in rare
cases

Cachelines

Data Region

Log Region

Architecture Monitor L1D updates during txns and generate log entries

Flush-bit
8 bits 1 word16 bits 48 bits1 bit 1 word

Log Metadata Log Data

TID TxID Addr Old Data New Data

Hold the log entries of one txn
• Small: 680B per core. The write

sets of txns in OLTP applications
are typically small[1-5]

• Battery-backed: A tiny battery
(e.g., 2.125 x 10-4mm3 of Li* per
core) supplies energy on crashes

[1] ReDU@MICRO’18 [2] Deneva@VLDB’17 [3] Hybrid Index@SIGMOD’16 [4] FOEDUS@SIGMOD’15
[5] From Oracle (https://www.oracle.com/database/what-isoltp/) * Lithium thin-film battery

......

Log entries
(20 entries / core)

64-bit
comparators

Address

Addr
Addr

Addr
Addr

...

Ti
n

y
B

at
te

ry

Undo+Redo

https://www.oracle.com/database/what-isoltp/

Silo: Speculative Hardware Logging

10

Memory Controller

Last Level Cache

L1 Log Generator

Core

L1...

...

Write Pending
Queue

Log Buffer

New data in logs

Log Entry

Persistent Memory

Processor

Core

Log Controller

......

Logs
in rare
cases

Cachelines

Data Region

Log Region

Architecture Monitor L1D updates during txns and generate log entries

Flush-bit
8 bits 1 word16 bits 48 bits1 bit 1 word

Log Metadata Log Data

TID TxID Addr Old Data New Data

Hold the log entries of one txn
• Small: 680B per core. The write

sets of txns in OLTP applications
are typically small[1-5]

• Battery-backed: A tiny battery
(e.g., 2.125 x 10-4mm3 of Li* per
core) supplies energy on crashes

[1] ReDU@MICRO’18 [2] Deneva@VLDB’17 [3] Hybrid Index@SIGMOD’16 [4] FOEDUS@SIGMOD’15
[5] From Oracle (https://www.oracle.com/database/what-isoltp/) * Lithium thin-film battery

• Log reduction
• Log update
• Write coalescing
• Handle log overflow
• Selective log flush on crash

Schemes to manipulate logs

Rare cases

......

Log entries
(20 entries / core)

64-bit
comparators

Address

Addr
Addr

Addr
Addr

...

Ti
n

y
B

at
te

ry

Undo+Redo

https://www.oracle.com/database/what-isoltp/

Silo: Speculative Hardware Logging

10

Memory Controller

Last Level Cache

L1 Log Generator

Core

L1...

...

Write Pending
Queue

Log Buffer

New data in logs

Log Entry

Persistent Memory

Processor

Core

Log Controller

......

Logs
in rare
cases

Cachelines

Data Region

Log Region

Architecture Monitor L1D updates during txns and generate log entries

Flush-bit
8 bits 1 word16 bits 48 bits1 bit 1 word

Log Metadata Log Data

TID TxID Addr Old Data New Data

Hold the log entries of one txn
• Small: 680B per core. The write

sets of txns in OLTP applications
are typically small[1-5]

• Battery-backed: A tiny battery
(e.g., 2.125 x 10-4mm3 of Li* per
core) supplies energy on crashes

[1] ReDU@MICRO’18 [2] Deneva@VLDB’17 [3] Hybrid Index@SIGMOD’16 [4] FOEDUS@SIGMOD’15
[5] From Oracle (https://www.oracle.com/database/what-isoltp/) * Lithium thin-film battery

• Log reduction
• Log update
• Write coalescing
• Handle log overflow
• Selective log flush on crash

Schemes to manipulate logs

Rare cases

......

Log entries
(20 entries / core)

64-bit
comparators

Address

Addr
Addr

Addr
Addr

...

Ti
n

y
B

at
te

ry

Undo+Redo

https://www.oracle.com/database/what-isoltp/

Log Reduction

➢ Reduce the size of on-chip log buffer based on write behaviors

11

Log Reduction

➢ Reduce the size of on-chip log buffer based on write behaviors

11

Log Ignorance

A write does not modify the data
• E.g., copy and assignment[1]

• Old data == New data

Log generator ignores this write
• Does not produce log entry

A1 A1
write

[1] LLC Deduplication@ICS’14

Log Reduction

➢ Reduce the size of on-chip log buffer based on write behaviors

11

Log Ignorance Log Merging

A write does not modify the data
• E.g., copy and assignment[1]

• Old data == New data

Multiple writes modify the same data
• Temporal locality of programs
• Only the oldest and newest data are required

Log generator ignores this write
• Does not produce log entry

A1 A1
write

[1] LLC Deduplication@ICS’14

Log Gen MetaA A1 A2A = A0
B = B0

Tx_begin
A = A1
B = B1
A = A2
Tx_end

Transaction

PC MetaB B0 B1
MetaA A0 A1

Comparators

Log Buffer

L1D

A1 A2

...

B1

Log Reduction

➢ Reduce the size of on-chip log buffer based on write behaviors

11

Log Ignorance Log Merging

A write does not modify the data
• E.g., copy and assignment[1]

• Old data == New data

Multiple writes modify the same data
• Temporal locality of programs
• Only the oldest and newest data are required

Log generator ignores this write
• Does not produce log entry

A1 A1
write

[1] LLC Deduplication@ICS’14

Log Gen MetaA A1 A2A = A0
B = B0

Tx_begin
A = A1
B = B1
A = A2
Tx_end

Transaction

PC MetaB B0 B1
MetaA A0 A1

Comparators

Log Buffer

L1D

A1 A2

...

B1

Log Reduction

➢ Reduce the size of on-chip log buffer based on write behaviors

11

Log Ignorance Log Merging

A write does not modify the data
• E.g., copy and assignment[1]

• Old data == New data

Multiple writes modify the same data
• Temporal locality of programs
• Only the oldest and newest data are required

Log generator ignores this write
• Does not produce log entry

A1 A1
write

[1] LLC Deduplication@ICS’14

Addr
0

1

Log Gen MetaA A1 A2A = A0
B = B0

Tx_begin
A = A1
B = B1
A = A2
Tx_end

Transaction

PC MetaB B0 B1
MetaA A0 A1

Comparators

Log Buffer

L1D

A1 A2

...

B1

Log Reduction

➢ Reduce the size of on-chip log buffer based on write behaviors

11

Log Ignorance Log Merging

A write does not modify the data
• E.g., copy and assignment[1]

• Old data == New data

Multiple writes modify the same data
• Temporal locality of programs
• Only the oldest and newest data are required

Log generator ignores this write
• Does not produce log entry

A1 A1
write

[1] LLC Deduplication@ICS’14

Addr
0

1
Merge

Log Gen MetaA A1 A2A = A0
B = B0

Tx_begin
A = A1
B = B1
A = A2
Tx_end

Transaction

PC MetaB B0 B1
MetaA A0 A1

Comparators

Log Buffer

L1D

A1 A2

...

B1

Log Reduction

➢ Reduce the size of on-chip log buffer based on write behaviors

11

Log Ignorance Log Merging

A write does not modify the data
• E.g., copy and assignment[1]

• Old data == New data

Multiple writes modify the same data
• Temporal locality of programs
• Only the oldest and newest data are required

Log generator ignores this write
• Does not produce log entry

A1 A1
write

[1] LLC Deduplication@ICS’14

Addr
0

1
Merge

In background

Log Update

12

➢ Use the new data in on-chip logs to in-place update the data region

Log Update

12

➢ Use the new data in on-chip logs to in-place update the data region

➢ Not block cacheline evictions
• Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

Log Update

12

➢ Use the new data in on-chip logs to in-place update the data region

➢ Not block cacheline evictions
• Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

A = A0
B = B0

Tx_begin
A = A1
B = B1
A = A2
Tx_end

Transaction

PC

A0 A2
B0 B1

MetaA
MetaB1

Flush-bit

0

Log Buffer

LogB
LogA

Data
Region

Log
Region

PM

Log ControllerL1D

A2

...

B1 (evicted)

Log Update

12

➢ Use the new data in on-chip logs to in-place update the data region

Only A2 is written to
the PM data region

➢ Not block cacheline evictions
• Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

A = A0
B = B0

Tx_begin
A = A1
B = B1
A = A2
Tx_end

Transaction

PC

A0 A2
B0 B1

MetaA
MetaB1

Flush-bit

0

Log Buffer

LogB
LogA

Data
Region

Log
Region

PM

Log ControllerL1D

A2

...

B1 (evicted)

Log Update

12

➢ Use the new data in on-chip logs to in-place update the data region

Other information in
logs is cleared on
chip after commit

Only A2 is written to
the PM data region

➢ Not block cacheline evictions
• Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

A = A0
B = B0

Tx_begin
A = A1
B = B1
A = A2
Tx_end

Transaction

PC

A0 A2
B0 B1

MetaA
MetaB1

Flush-bit

0

Log Buffer

LogB
LogA

Data
Region

Log
Region

PM

Log ControllerL1D

A2

...

B1 (evicted)

Log Update

12

➢ Use the new data in on-chip logs to in-place update the data region

Other information in
logs is cleared on
chip after commit

Only A2 is written to
the PM data region

➢ Not block cacheline evictions
• Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

➢ Benefits
• Write reduction: Don’t write logs to PM in common cases

• No ordering constraints: Don’t wait for flushing logs (and cachelines) to the log (and data) regions

A = A0
B = B0

Tx_begin
A = A1
B = B1
A = A2
Tx_end

Transaction

PC

A0 A2
B0 B1

MetaA
MetaB1

Flush-bit

0

Log Buffer

LogB
LogA

Data
Region

Log
Region

PM

Log ControllerL1D

A2

...

B1 (evicted)

Write Coalescing

13

➢ Silo allows two update paths
• 8B: Log in-place Updates (LU)

• 64B: Cacheline Evictions (CE)
LUCE

On-PM Buffer

Cachelines
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

Physical Media

PM

Write Coalescing

13

➢ Silo allows two update paths
• 8B: Log in-place Updates (LU)

• 64B: Cacheline Evictions (CE)

➢ LU and CE are coalesced
in an on-PM buffer

LUCE

On-PM Buffer

Cachelines
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

Physical Media

PM

Write Coalescing

13

➢ Silo allows two update paths
• 8B: Log in-place Updates (LU)

• 64B: Cacheline Evictions (CE)

➢ LU and CE are coalesced
in an on-PM buffer

• W1-W3 have overlapped bytes

LUCE

On-PM Buffer

Cachelines
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

Physical Media

PM

❶W1 → ❷W1, W2 → ❸W1Low4B|W3Low4B, W3High4B|W2High4B

Write Coalescing

13

➢ Silo allows two update paths
• 8B: Log in-place Updates (LU)

• 64B: Cacheline Evictions (CE)

➢ LU and CE are coalesced
in an on-PM buffer

• W1-W3 have overlapped bytes

• W4-W5 are not overlapped

LUCE

On-PM Buffer

Cachelines
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

Physical Media

PM

❶W1 → ❷W1, W2 → ❸W1Low4B|W3Low4B, W3High4B|W2High4B

❹W4 → ❺W4, W5

Write Coalescing

13

➢ Silo allows two update paths
• 8B: Log in-place Updates (LU)

• 64B: Cacheline Evictions (CE)

➢ LU and CE are coalesced
in an on-PM buffer

• W1-W3 have overlapped bytes

• W4-W5 are not overlapped

• W6 is merged into cachelines

LUCE

On-PM Buffer

Cachelines
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

Physical Media

PM

❶W1 → ❷W1, W2 → ❸W1Low4B|W3Low4B, W3High4B|W2High4B

❹W4 → ❺W4, W5

Cachelines ❻W6 Cachelines… …

Write Coalescing

13

➢ Silo allows two update paths
• 8B: Log in-place Updates (LU)

• 64B: Cacheline Evictions (CE)

➢ LU and CE are coalesced
in an on-PM buffer

• W1-W3 have overlapped bytes

• W4-W5 are not overlapped

• W6 is merged into cachelines

➢ Correctness: No race risk

LUCE

On-PM Buffer

Cachelines
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

Physical Media

PM

❶W1 → ❷W1, W2 → ❸W1Low4B|W3Low4B, W3High4B|W2High4B

❹W4 → ❺W4, W5

Cachelines ❻W6 Cachelines… …

Write Coalescing

13

➢ Silo allows two update paths
• 8B: Log in-place Updates (LU)

• 64B: Cacheline Evictions (CE)

➢ LU and CE are coalesced
in an on-PM buffer

• W1-W3 have overlapped bytes

• W4-W5 are not overlapped

• W6 is merged into cachelines

➢ Correctness: No race risk

LUCE

Time ① Flush-bit in log is 1. CE updates the data region
LU (at txn commit)

CE

①

On-PM Buffer

Cachelines
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

Physical Media

PM

❶W1 → ❷W1, W2 → ❸W1Low4B|W3Low4B, W3High4B|W2High4B

❹W4 → ❺W4, W5

Cachelines ❻W6 Cachelines… …

Write Coalescing

13

➢ Silo allows two update paths
• 8B: Log in-place Updates (LU)

• 64B: Cacheline Evictions (CE)

➢ LU and CE are coalesced
in an on-PM buffer

• W1-W3 have overlapped bytes

• W4-W5 are not overlapped

• W6 is merged into cachelines

➢ Correctness: No race risk

LUCE

Time

Time

① Flush-bit in log is 1. CE updates the data region

② LU and CE are coalesced to update the data region
LU (at txn commit)

CE

①

②

On-PM Buffer

Cachelines
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

Physical Media

PM

❶W1 → ❷W1, W2 → ❸W1Low4B|W3Low4B, W3High4B|W2High4B

❹W4 → ❺W4, W5

Cachelines ❻W6 Cachelines… …

Write Coalescing

13

➢ Silo allows two update paths
• 8B: Log in-place Updates (LU)

• 64B: Cacheline Evictions (CE)

➢ LU and CE are coalesced
in an on-PM buffer

• W1-W3 have overlapped bytes

• W4-W5 are not overlapped

• W6 is merged into cachelines

➢ Correctness: No race risk

LUCE

Time

Time

Time

① Flush-bit in log is 1. CE updates the data region

② LU and CE are coalesced to update the data region

③ LU writes the data region. CE will not write twice*

LU (at txn commit)

CE

* By using bit-level write reduction schemes, e.g., DCW@ISCA’09

①

②

③

On-PM Buffer

Cachelines
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

Physical Media

PM

❶W1 → ❷W1, W2 → ❸W1Low4B|W3Low4B, W3High4B|W2High4B

❹W4 → ❺W4, W5

Cachelines ❻W6 Cachelines… …

Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot
hold all logs in one txn

Flush undo logs to
ensure atomicity

Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot
hold all logs in one txn

Log bufferU+R logn+1

PM

Flush undo logs to
ensure atomicity

Oldn

Old1

…
Newn

New1

…

Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot
hold all logs in one txn

Log bufferU+R logn+1

PM

Ulog1

Flush undo logs to
ensure atomicity

Oldn

Old1

…
Newn

New1

…

Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot
hold all logs in one txn

Log bufferU+R logn+1

PM

Flush-bit = 0

Ulog1 Data1

Flush undo logs to
ensure atomicity

Oldn

Old1

…
Newn

New1

…

Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot
hold all logs in one txn

Log bufferU+R logn+1

PM

Flush-bit = 0

Ulog1 Data1

In parallel

Flush undo logs to
ensure atomicity

Oldn

Old1

…
Newn

New1

…

Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot
hold all logs in one txn

A system crash or
power failure occurs

Log bufferU+R logn+1

PM

Flush-bit = 0

Ulog1 Data1

In parallel

PM

Flush undo logs to
ensure atomicity

Selectively flush
logs on demand

Oldn

Old1

…
Newn

New1

…
Oldn

Old1

…
Newn

New1

…

Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot
hold all logs in one txn

A system crash or
power failure occurs

Log bufferU+R logn+1

PM

Flush-bit = 0

Ulog1 Data1

In parallel

PM

Uncommitted txns
• Undo logs

Flush undo logs to
ensure atomicity

Selectively flush
logs on demand

Atomicity

Ulogs

Oldn

Old1

…
Newn

New1

…
Oldn

Old1

…
Newn

New1

…

Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot
hold all logs in one txn

A system crash or
power failure occurs

Log bufferU+R logn+1

PM

Flush-bit = 0

Ulog1 Data1

In parallel

PM

Uncommitted txns
• Undo logs

Flush undo logs to
ensure atomicity

Selectively flush
logs on demand

Atomicity

Durability

Ulogs Rlogs

Oldn

Old1

…
Newn

New1

…
Oldn

Old1

…
Newn

New1

…

Committed txns
• Redo logs (flush-bit = 0)

Rare Cases

14

Log Overflow System Crash

➢ Silo writes logs to guarantee correctness in two rare cases

The log buffer cannot
hold all logs in one txn

A system crash or
power failure occurs

Log bufferU+R logn+1

PM

Flush-bit = 0

Ulog1 Data1

In parallel

PM

Uncommitted txns
• Undo logs
• Revoke

Flush undo logs to
ensure atomicity

Selectively flush
logs on demand

Atomicity

Durability

Ulogs Rlogs

Oldn

Old1

…
Newn

New1

…
Oldn

Old1

…
Newn

New1

…

Committed txns
• Redo logs (flush-bit = 0)
• Replay

Recoverability

Evaluation

➢ Comparisons
• Base: A hardware logging baseline

• FWB[2]: The hardware logging design of FWB

• MorLog[3]: The morphable hardware logging

• LAD[4]: The logless atomic durability design

• Silo: Our speculative logging design

15

Processor

Cores 8 cores, x86-64, 2 GHz

L1 I/D Private, 64B per line, 32KB, 8-way, 4 cycles

L2 Private, 64B per line, 256KB, 8-way, 12 cycles

LLC Shared, 64B per line, 8MB, 16-way, 28 cycles

Mem Ctrl FRFCFS, 64-entry queue in ADR domain

Log Buffer 680B per core, FIFO, 8 cycles, battery-backed

Persistent Memory

Capacity 16GB phase-change memory

Latency Read / Write: 50 / 150 ns[1]

Gem5 Simulation

[1] HOOP@ISCA’20 [2] FWB@HPCA’18 [3] MorLog@ISCA’20 [4] LAD@MICRO’19

➢ Benchmarks
• Micro-benchmarks

• Array, Btree, Hash, Queue, RBtree

• Macro-benchmarks
• TPCC, YCSB

Transaction Throughput

16

0

2

4

6

8

10

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

1

2

3

4

5

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

1 core 8 cores

Our work Our work

1 core 8 cores

Existing hardware logging designs 1.4x 4.3x

Existing hardware logless design (LAD) 1.1x 1.5x

Silo improves throughput

Transaction Throughput

16

0

2

4

6

8

10

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

1

2

3

4

5

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

1 core 8 cores

“Log as data”: No ordering constraints
Do not wait to persist logs and cachelines

Our work Our work

1 core 8 cores

Existing hardware logging designs 1.4x 4.3x

Existing hardware logless design (LAD) 1.1x 1.5x

Silo improves throughput

Transaction Throughput

16

0

2

4

6

8

10

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

1

2

3

4

5

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

1 core 8 cores

“Log as data”: No ordering constraints
Do not wait to persist logs and cachelines

Our work Our work

1 core 8 cores

Existing hardware logging designs 1.4x 4.3x

Existing hardware logless design (LAD) 1.1x 1.5x

Silo improves throughput
Wait to persist logs and cachelines

Transaction Throughput

16

0

2

4

6

8

10

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

1

2

3

4

5

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

1 core 8 cores

“Log as data”: No ordering constraints
Do not wait to persist logs and cachelines

Our work Our work

1 core 8 cores

Existing hardware logging designs 1.4x 4.3x

Existing hardware logless design (LAD) 1.1x 1.5x

Silo improves throughput
Wait to persist logs and cachelines

Wait to persist cachelines:
L1 → LLC → MC

Write Traffic

17

0

0.2

0.4

0.6

0.8

1

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

0.2

0.4

0.6

0.8

1

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

N
o

rm
al

iz
ed

 W
ri

te
 T

ra
ff

ic

1 core 8 cores

84

Our workOur work

Write Traffic

17

0

0.2

0.4

0.6

0.8

1

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

0.2

0.4

0.6

0.8

1

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

N
o

rm
al

iz
ed

 W
ri

te
 T

ra
ff

ic

1 core 8 cores

85

Write logs and cachelines

Silo reduces write traffic by 76.5% over existing hardware logging designs

Logs are used to update data

Our workOur work

Write Traffic

17

0

0.2

0.4

0.6

0.8

1

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

0

0.2

0.4

0.6

0.8

1

Array Btree Hash Queue RBtree TPCC YCSB Average

Base FWB MorLog LAD Silo

N
o

rm
al

iz
ed

 W
ri

te
 T

ra
ff

ic

1 core 8 cores

86

Write logs and cachelines

Silo reduces write traffic by 76.5% over existing hardware logging designs

Logs are used to update data

Do not produce logsWrite coalescing

Our workOur work

Silo exhibits approximate write traffic with LAD

Overhead of Log Buffer

18

52

37
40

19

6

22
18

28

4
9

20

9
5

13
8 10

0

10

20

30

40

50

60

Array Btree Hash Queue RBtree TPCC YCSB Average

The number of total log entries

The number of remaining log entries

N
u

m
b

er
 o

f
Lo

gs

p
er

 t
ra

n
sa

ct
io

n

Max. 680B per core

Log ignorance dominates

Overhead of Log Buffer

Intel’s eADR BBB@HPCA’21 Our Silo

Flush Size for 8 cores (KB) 10,496 16 5.3125

Flush Energy (µJ) 54,377 194 62

Supercapacitor (size: mm3; area: mm2) 151; 28.4 0.54; 0.66 0.17; 0.31

Lithium thin-film (size: mm3; area: mm2) 1.51; 1.32 0.0054; 0.031 0.0017; 0.014

18

Battery consumption*

* Based on the energy calculation model from BBB@HPCA’21

52

37
40

19

6

22
18

28

4
9

20

9
5

13
8 10

0

10

20

30

40

50

60

Array Btree Hash Queue RBtree TPCC YCSB Average

The number of total log entries

The number of remaining log entries

N
u

m
b

er
 o

f
Lo

gs

p
er

 t
ra

n
sa

ct
io

n

Max. 680B per core

Log ignorance dominates

Overhead of Log Buffer

Intel’s eADR BBB@HPCA’21 Our Silo

Flush Size for 8 cores (KB) 10,496 16 5.3125

Flush Energy (µJ) 54,377 194 62

Supercapacitor (size: mm3; area: mm2) 151; 28.4 0.54; 0.66 0.17; 0.31

Lithium thin-film (size: mm3; area: mm2) 1.51; 1.32 0.0054; 0.031 0.0017; 0.014

18

Battery consumption*

* Based on the energy calculation model from BBB@HPCA’21

52

37
40

19

6

22
18

28

4
9

20

9
5

13
8 10

0

10

20

30

40

50

60

Array Btree Hash Queue RBtree TPCC YCSB Average

The number of total log entries

The number of remaining log entries

N
u

m
b

er
 o

f
Lo

gs

p
er

 t
ra

n
sa

ct
io

n

Max. 680B per core

Log ignorance dominates

Smaller than
[eADR] 888.2x; 91.6x
[BBB] 3.2x; 2.1x

➢ Handle large transactions
• Log overflow occurs

• Throughput decreases by only 7.4%

➢ Change latency of log buffer
• A 128-cycle log buffer only decreases

the throughput by 3.3% over an 8-cycle one

More Results

19

Find more details in our paper!

Conclusion

➢ Ensuring atomic durability becomes important for PM

20

Conclusion

➢ Ensuring atomic durability becomes important for PM

➢ Prior hardware logging studies: Log as Backup
• Heavy writes to PM

• Ordering constraints between persisting logs and data

20

Conclusion

➢ Ensuring atomic durability becomes important for PM

➢ Prior hardware logging studies: Log as Backup
• Heavy writes to PM

• Ordering constraints between persisting logs and data

➢ We propose a speculative logging design Silo: Log as Data
• Use on-chip logs to in-place update data (Make common case fast)

• Write logs to back up data in rare cases (Guarantee recoverability)

20

Conclusion

➢ Ensuring atomic durability becomes important for PM

➢ Prior hardware logging studies: Log as Backup
• Heavy writes to PM

• Ordering constraints between persisting logs and data

➢ We propose a speculative logging design Silo: Log as Data
• Use on-chip logs to in-place update data (Make common case fast)

• Write logs to back up data in rare cases (Guarantee recoverability)

➢ Benefits

• Improve transaction throughput

• Reduce write traffic to PM

• Low hardware overhead
20

Thank you!

