Silo: Speculative Hardware Logging for
Atomic Durability in Persistent Memory

Ming Zhang, Yu Hua
Huazhong University of Science and Technology, China

29th IEEE International Symposium on High-Performance Computer Architecture (HPCA), 2023

Persistent Memory (PM)

Traditional hierarchy

__cPu |

DDR

 DRAM |

-'-SATA/N VMe

. DISK

Persistent Memory (PM)

Traditional hierarchy

. CcPU |
DDR
@ Fast byte access t
@ Volatile DRAM]

-'-SATA/N VMe

. DISK

Persistent Memory (PM)

Traditional hierarchy

. CcPU |
DDR
@ Fast byte access t
@ Volatile DRAM]

S "'SAZ\/FVAZ
. DISK

@ Persistent
@ Slow block access

Persistent Memory (PM)

Traditional hierarchy —| r Emerging hierarchy —|
. cPU . cPU
DDR DDR
@ Fast byte access t @ Fast byte access
@VOIatile DRAM] :> ‘ DRAM ‘ ‘ PM @ Persistent
-'-SATA/NVMe

. DISK

@ Persistent
@ Slow block access

Persistent Memory (PM)

Traditional hierarchy —| r Emerging hierarchy —|
. cPU . cPU
DDR DDR
@ Fast byte access t @ Fast byte access
@Volatile DRAM] :> ‘ DRAM ‘ ‘ PM @ Persistent
-'-SATA/NVMe

. DISK

@ Persistent
@ Slow block access

Data are not lost
=» Ensure atomic durability

for data consistency

Atomic Durability

» A group of updates are written to PM in an all or nothing manner
» Current 64-bit CPUs only support 8B atomic writel-3!

[1] Fast&Fair@FAST’18 [2] Level Hashing@OSDI’'18 [3] Recipe@SOSP’19

Atomic Durability

» A group of updates are written to PM in an all or nothing manner
» Current 64-bit CPUs only support 8B atomic writel-3!

4)

AN @ $100 @ g A:500 | |A: 400 @
dh dh B:500| |B: 600
PM

- J

[1] Fast&Fair@FAST’18 [2] Level Hashing@OSDI’'18 [3] Recipe@SOSP’19

Atomic Durability

» A group of updates are written to PM in an all or nothing manner
» Current 64-bit CPUs only support 8B atomic writel-3!

4 N\

AN @ $100 @ g A:500 | |A: 400 @
dh dh B:500| |B: 600
PM

- J

4 N\

A ® $100 9> @ o A:500| |A:400 ®
dh dh B:500| |B: 500
PM

.

' I
[1] Fast&Fair@FAST’18 [2] Level Hashing@OSDI’'18 [3] Recipe@SOSP’19 Pa‘rt I a'l u p d a‘t eS -

Write-Ahead Logging In Transaction

» Back-up data before updates to ensure atomic durability

Transaction PM

[) Tx_begin 4 Log Region\
create Log A, B
write Log A, B
flush LogA
flush LogB
sfence

$100 O
B =B + 100
flush A
flush B
sfence

Tx_end _ Data Region

Write-Ahead Logging In Transaction

» Back-up data before updates to ensure atomic durability

Transaction PM

. A . -
Tx_begin 4 Log Reglon\
create Log A, B
write Log A, B
flush LogA A: 500 B: 500

flush LogB
sfence

$100 N - A~ doo | [T

B =B + 100

flush A

flush B

sfence

Tx_end _ Data Region

Write-Ahead Logging In Transaction

» Back-up data before updates to ensure atomic durability

Transaction

Tx_begin

create Log A, B
write Log A, B
flush LogA
flush LogB
sfence

A=A - 100
B =B + 100
flush A
flush B
sfence

Tx_end

PM
4 Log Region\
A: 500 B: 500
A: 400 | |B: 600
_ Data Region

Write-Ahead Logging In Transaction

» Back-up data before updates to ensure atomic durability

Transaction

Tx_begin

write Log A, B
flush LogA
flush LogB
sfence

create Log A, B

A=A - 100
B =B + 100
flush A
flush B
sfence

Tx_end

PM
4 Log Region\
A:500| |B: 500
A: @ B: @
_ Data Region

Write-Ahead Logging In Transaction

» Back-up data before updates to ensure atomic durability

Transaction

Tx_begin
create Log A, B
write Log A, B
flush LogA
flush LogB
sfence

A=A - 100
B =B + 100
flush A
flush B
sfence

Tx_end

PM
4 Log Region\
A:500| |B: 500
A:500| |[B: 500
_ CData Region

Hardware Logging

Hardware Logging

Software Logging

Tx_begin
create Log
write Log
flush Log
sfence
write data
flush data
sfence

Tx_end

Log operations exist on the critical path

Throughput decreases by up to 70%!!!

[1]] ATOM@HPCA’17

Hardware Logging

Software Logging

Tx_begin
create Log
write Log
flush Log

sfence >
write data

flush data
sfence
Tx_end

Log operations exist on the critical path

Throughput decreases by up to 70%!!!

[1]] ATOM@HPCA’17

Hardware Logging

Tx_begin
write data
Tx_end

Hardware Logging

Software Logging

Tx_begin

create Log
write Log
flush Log
sfence

write data
flush data
sfence

Tx_end

-

Log operations exist on the critical path

Throughput decreases by up to 70%!!!

[1]] ATOM@HPCA’17

Hardware Logging

Tx_begin

Tx_end

write data

[Cache]

[Log Gen]

Mem Ctrl

[D:;ta]

PM

[ng]

v’ Better performance
v’ Easy programming

Offload logging
operations to
hardware

State-of-The-Art

State-of-The-Art

[Cache] [Log Gen]
Mem Ctrl ATOM@HPCA’17
FWB@HPCA’18
- N MorLog@ISCA’20
[Data]PM[Log] ASAP@ISCA’22

State-of-The-Art

[Cache] [Log Gen]
Mem Ctrl ATOM@HPCA’17
FWB@HPCA’18
- N MorLog@ISCA’20
[Data]PM[Log] ASAP@ISCA’22

[Cache] [Log Gen]
RN
,POIem Ci\(l
/ \
/ !
[Data] [Log]
PM

WrAP@HPCA’16

State-of-The-Art

[Cache] [Log Gen]
Mem Ctrl ATOM@HPCA'17
! T FWB@HPCA’%S
Callesll
PM
[Cache] [Log Gen]
Mem Ctrl
DRAMY ReDU@MICRO’18

[Cache] [Log Gen]
/~\
Kem Ciyl
/ \
/ !
[Data] [Log]
PM

WrAP@HPCA’16

State-of-The-Art

[Cache] [Log Gen]

Mem Ctrl

(Data | [Log |
PM

[Cache] [Log Gen]

Mem Ctrl

DRAMY

[Datz Jom(Log)

ATOM@HPCA’17
FWB@HPCA’18
MorLog@ISCA’20
ASAP@ISCA’22

ReDU@MICRO’18

[Cache] [Log Gen]

/N
Kiem Ciyl
/ \

[Da{ca] [\ng]

PM

[Cache] [Log Gen]

Mem Ctrl (Jqueue

last one

[D;ta] [ng]

PM

WrAP@HPCA’16

Proteus@MICRO’17

State-of-The-Art

[Cache] [Log Gen]

Mem Ctrl

(Data | [Log |
PM

[Cache] [Log Gen]

Mem Ctrl

DRAMY

[Datz Jom(Log)

ATOM@HPCA’17
FWB@HPCA’18
MorLog@ISCA’20
ASAP@ISCA’22

ReDU@MICRO’18

[Cache] [Log Gen]

/N
Kiem Ciyl
/ \

[Da{ca] [\ng]

PM

[Cache] [Log Gen]

Mem Ctrl (Jqueue

last one

[Dz;ta] [ng]

PM

WrAP@HPCA’16

Proteus@MICRO’17

Tx_begin

Challenges | s

Tx_end

Challenges

Heavy Writes

Tx_begin
write A
write B

Tx_end

2-3Xx
writes \
Data Log

|

A: 400
B: 600

J{

A: 500
B: 500

PM

Tx_begin

Challenges | s

Tx_end
Heavy Writes
2-3X
writes \
Data Log

A: 400 A: 500
B: 600 B: 500

PM

Logging supports to recover
data from a system crash,
but increases the write traffic

Tx_begin

Challenges | s

Tx_end
Heavy Writes
2-3X
writes \
Data Log

A: 400 A: 500
B: 600 B: 500

PM

Logging supports to recover
data from a system crash,
but increases the write traffic

=» Exacerbate PM endurance

Tx_begin

Challenges | s
Tx_end
2-3X
writes \
Data Log

A: 400 A: 500
B: 600 B: 500

PM

Ordering Constraints

Logging supports to recover
data from a system crash,
but increases the write traffic

=» Exacerbate PM endurance

Tx_begin

Challenges | s
Tx_end
2-3X
writes \
Data Log

|
|
|
|
|
|
|
|
A: 400 A: 500 |
B: 600 B: 500 :
|
|
|
|
|
|
|
|
|
|
|
|

Ordering Constraints

{ UlogA X UlogB) IO\

Hardware undo(DataA X DataB):Commit

. : > Time

[Persist]

PM

Logging supports to recover
data from a system crash,
but increases the write traffic

=» Exacerbate PM endurance

Tx_begin

Challenges | s
Tx_end
2-3X
writes \
Data Log

A: 400 A: 500
B: 600 B: 500

PM

Ordering Constraints

{ UlogA X UlogB) IO\

Hardware undo(DataA X DataB):Commit

. : > Time

(RLogA X RLogB) Commit

Hardware redo \:(/ DataA X _ DataB)

° » Time

[Persist]

Logging supports to recover
data from a system crash,
but increases the write traffic

=» Exacerbate PM endurance

Tx_begin

Challenges | s
Tx_end
2-3X
writes \
Data Log

A: 400 A: 500
B: 600 B: 500

PM

Ordering Constraints

{ UlogA X UlogB) IO\

Hardware undo(DataA X DataB):Commit

. : > Time

(RLogA X RLogB) Commit
Hardware redo \:(/ DataA X _DataB)
o , » Time
(URLogA X URLogB) Commit
DataA X DataB >
Hardware undo+redo

[Persist]

Logging supports to recover
data from a system crash,
but increases the write traffic

=» Exacerbate PM endurance

Challenges

Heavy Writes

Data

A: 400
B: 600

PM

Log

A: 500
B: 500

Tx_begin
write A
write B

Tx_end

2-3X
writes

Logging supports to recover
data from a system crash,
but increases the write traffic

=» Exacerbate PM endurance

[1] FWB@HPCA’18 [2] MorLog@ISCA’20

Ordering Constraints

{ UlogA X UlogB) IO\

Hardware undo(DataA X DataB):Commit

. : > Time

(RLogA X RLogB) Commit

Hardware redo \:(/ DataA X _ DataB)

o , » Time

[Persist]

1
(URLogA X URLogB) Commit
DataA X DataB >
Hardware undo+redo

* FWB!! writes logs to PM before the updated data for each write
* MorLog!? flushes logs to PM before commit to ensure durability

Challenges

Heavy Writes

Data

A: 400
B: 600

PM

Log

A: 500
B: 500

Tx_begin
write A
write B

Tx_end

2-3X
writes

Logging supports to recover
data from a system crash,
but increases the write traffic

=» Exacerbate PM endurance

[1] FWB@HPCA’18 [2] MorLog@ISCA’20

Ordering Constraints

{ UlogA X UlogB) IO\

Hardware undo(DataA X DataB):Commit

. : > Time

(RLogA X RLogB) Commit

Hardware redo \:(/ DataA X _ DataB)

o , » Time

[Persist]

1
(URLogA X URLogB) Commit
DataA X DataB >
Hardware undo+redo

* FWB!! writes logs to PM before the updated data for each write
* MorLog!? flushes logs to PM before commit to ensure durability

=» Increase latency

Key ldeas

Key ldeas

» Speculative Logging
* Crash is rare for a single machinel'-?

=» Do not conservatively write logs to PM in
common cases (no failures)

=» Only write logs to PM in rare cases (e.g.,
crashes) to guarantee atomic durability

[1] Lazy Persistency@ISCA’'18 [2] LAD@MICRO’19

Key ldeas

» Speculative Logging
* Crash is rare for a single machinel'-?

=» Do not conservatively write logs to PM in
common cases (no failures)

=» Only write logs to PM in rare cases (e.g.,
crashes) to guarantee atomic durability

» Log as Data

* Logs are able to record the new data

=» Use on-chip logs to in-place update the PM
data after commit in common cases

[1] Lazy Persistency@ISCA’'18 [2] LAD@MICRO’19

Key ldeas

» Speculative Logging

« Crash is rare for a single machinel'-]

=» Do not conservatively write logs to PM in
common cases (no failures)

=» Only write logs to PM in rare cases (e.g.,
crashes) to guarantee atomic durability

» Log as Data

* Logs are able to record the new data

=» Use on-chip logs to in-place update the PM
data after commit in common cases

[1] Lazy Persistency@ISCA’'18

[2] LAD@MICRO’19

R S R Ry,

On chip

Common case

Log %

Rare case

A 4

Data region

Log region

.

———

Key ldeas

» Speculative Logging
* Crash is rare for a single machinel'-?

=» Do not conservatively write logs to PM in
common cases (no failures)

=» Only write logs to PM in rare cases (e.g.,
crashes) to guarantee atomic durability

» Log as Data
* Logs are able to record the new data

=» Use on-chip logs to in-place update the PM
data after commit in common cases

[1] Lazy Persistency@ISCA’'18 [2] LAD@MICRO’19

———

On chip

Common case

Log %

Rare case

[Cache]

» Data region

* Log region

[Log Gen]

Mem Ctrl

Log as data

[Dz;ta

PM

__tog |

.

Key ldeas

» Speculative Logging
* Crash is rare for a single machinel'-?

=» Do not conservatively write logs to PM in
common cases (no failures)

=» Only write logs to PM in rare cases (e.g.,
crashes) to guarantee atomic durability

» Log as Data
* Logs are able to record the new data

=» Use on-chip logs to in-place update the PM
data after commit in common cases

R S R Ry,

\

Make the common case fast
and guarantee recoverability

[1] Lazy Persistency@ISCA’'18 [2] LAD@MICRO’19

On chip

Common case

———

Log ¢

Rare case

[Cache]

» Data region

* Log region

[Log Gen]

Mem Ctrl

Log as data

[Dz;ta

PM

__tog |

.

o R R e —

Silo: Speculative Hardware Logging

_________________ Processor —-——
L1 L1

(Log Generator)

Last Level Cache (LogEntry)
Memory Controller
Cachelines Log Buffer
I

Write Pending

Log Controller

Queue
New datalin logs
Y JV A
Data Region Logs
in rare
Log Region < cases

Persistent Memory o

o R R e —

Silo: Speculative Hardware Logging

_________________ Processor ---- LTI Monitor L1D updates during txns and generate log entries

L1 L1

(Log Generator

Last Level Cache (LogEntry)
Memory Controller
Cachelines Log Buffer
v I

Write Pending

Log Controller

|
|
|
|
|
|
|
|
|
|
|
|
A |
|
|
|
|
|
|
|
|
|
|
|
|

Queue
New datalin logs
Y JV A
Data Region Logs
in rare
Log Region < cases
Persistent Memory o

10

o R R e —

Silo: Speculative Hardware Logging

————————————————— Processor ----SN{S[I 1G] (=]

L1 L1

(Log Generator

Last Level Cache (LogEntry
Memory Controller
Cachelines Log Buffer
v [

Write Pending

Log Controller

Queue
New datalin logs
(A 4 JV A
Data Region Logs
in rare
Log Region < cases
- Persistent Memory o

Monitor L1D updates during txns and generate log entries

jommmmmmmmm - Log Metadata -------- -_,----- Log Data ----- -
Flush-bit TID TxID Addr | Old Data | New Data
1 bit 8 bits 16 bits 48 bits 1 word 1 word

Undo+Redo

10

o R R e —

Silo: Speculative Hardware Logging

_________________ Processor —-——
L1 L1

Monitor L1D updates during txns and generate log entries

Undo+Redo

sets of txns in OLTP applications

(e.g., 2.125 x 10*mm?3 of Li* per
core) supplies energy on crashes

lon G n e Log Metadata -------- -_,----- Log Data ----- -
A ! Flush-bit | TID | TxID | Addr | Old Data | New Data
Last Level Cache (Log Entry)/E/ 1 bit 8 bits 16 bits 48 bits 1 word 1 word
| .
Memory Controller ! e ddross | N Hold the log entries of one txn .
v ! 64-bit 20 Logt gntr}es) * Small: 680B per core. The write
Cachelines Log Buffer ! comparators entries / core
| . [] }\\:\ o< Adar z - [1-5]
v) , o< Addr g are typically small
Write Pendi ' 3 | « Battery-backed: A tiny batt
”gueeune ing Log Controller] | o L S attery-backe iny battery
L : o Addr =
New datalin logs ! ~ g
|
(v)
Data Region Logs
in rare
Log Region < cases
- Persistent Memory o

[1] RekDU@MICRO’18 [2] Deneva@VLDB’17 [3] Hybrid Index@SIGMOD’16 [4] FOEDUS@SIGMOD’15
[5] From Oracle (https://www.oracle.com/database/what-isoltp/)

* Lithium thin-film battery

10

https://www.oracle.com/database/what-isoltp/

o R R e —

Silo: Speculative Hardware Logging

L1 L1

Lol T TR Architecture

Data Region Logs
in rare
Log Region < cases
- Persistent Memory o

Monitor L1D updates during txns and generate log entries

Undo+Redo

sets of txns in OLTP applications

(e.g., 2.125 x 10*mm?3 of Li* per

core) supplies energy on crashes

Loz G n D Log Metadata -------- ._,----- Log Data ----- .
A ! Flush-bit | TID | TxID | Addr | Old Data | New Data
Last Level Cache (Log Entry)/E/ 1 bit 8 bits 16 bits 48 bits 1 word 1 word
I .
Memory Controller ! e ddross | N Hold the log entries of one txn .
j v ! 64-bit Log entries * Small: 680B per core. The write
Cachelines | LogBuffer | Comf_cgatom (ZOA?ztrr‘es/ core)
v | | | \E\ o< Addr § are typically smalll%-5!
. . I B e - . i
ertguF;eunedmg Log Controller }\ | o o S Battery-backed: A tiny battery
L ! o= Addr =
New datalin logs ! ~ o
|

Log reduction
Log update
Write coalescing

Handle log overflow
Selective log flush on crash

Schemes to manipulate logs

> Rare cases

[1] RekDU@MICRO’18 [2] Deneva@VLDB’17 [3] Hybrid Index@SIGMOD’16 [4] FOEDUS@SIGMOD’15
[5] From Oracle (https://www.oracle.com/database/what-isoltp/)

* Lithium thin-film battery

10

https://www.oracle.com/database/what-isoltp/

o R R e —

Silo: Speculative Hardware Logging

Lol T TR Architecture

L1 L1

Write Pending

(Log Generator

)

Last Level Cache (LogEntry
Memory Controller

Cachelines Log Buffer

v I

Vs

Log Controller

i

M

Monitor L1D updates during txns and generate log entries

jommmmmmmmm - Log Metadata -------- -_,----- Log Data ----- -
Flush-bit | TID TxID | Addr | Old Data | New Data| Undo+Redo
1 bit 8 bits 16 bits 48 bits 1 word 1 word
e N Hold the log entries of one txn
Address . .
64-bit Log entries * Small: 680B per core. The write
Comf_‘gators (ZOAedr;t”es/core) sets of txns in OLTP applications
.
o< Addr § are typically smalll1->]
o e og . Batterv—backed:_4A tan bat'fry
o< Addr = (e.g., 2.125 x 10*mm?3 of Li* per
\ J core) supplies energy on crashes

Queue
New datalin logs
(A 4 JV A
Data Region Logs
in rare
Log Region < cases
- Persistent Memory o

Log upd

Log reduction

ate

Schemes to manipulate logs

Write coalescing
Handle log overflow
Selective log flush on crash

A

> Rare cases

[1] RekDU@MICRO’18 [2] Deneva@VLDB’17 [3] Hybrid Index@SIGMOD’16 [4] FOEDUS@SIGMOD’15

[5] From Oracle (https://www.oracle.com/database/what-isoltp/)

* Lithium thin-film battery

10

https://www.oracle.com/database/what-isoltp/

Log Reduction

» Reduce the size of on-chip log buffer based on write behaviors

Log Reduction

» Reduce the size of on-chip log buffer based on write behaviors

[Log Ignorance}

A write does not modify the data
* E.g., copy and assignment!!]
* Old data == New data

AL T AL

\ J
Y

Log generator ignores this write
* Does not produce log entry

[1] LLC Deduplication@ICS’14

Log Reduction

» Reduce the size of on-chip log buffer based on write behaviors

[Log Ignorance}

A write does not modify the data
* E.g., copy and assignment!!]
* Old data == New data

AL T AL

\ J
Y

Log generator ignores this write
* Does not produce log entry

[1] LLC Deduplication@ICS’14

[Log Merging J

Multiple writes modify the same data
* Temporal locality of programs
* Only the oldest and newest data are required

Log Reduction

» Reduce the size of on-chip log buffer based on write behaviors

[Log Ignorance}

A write does not modify the data
* E.g., copy and assignment!!]
* Old data == New data

AL T AL

\ J
Y

Log generator ignores this write

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* Does not produce log entry :
|

[1] LLC Deduplication@ICS’14

[Log Merging J

Multiple writes modify the same data
* Temporal locality of programs
* Only the oldest and newest data are required

Transaction

A=A0
B=B0
Tx_begin
A=Al
H B=B1
A=A2

i Tx_end

......................

Log Buffer ———
> MetaA | Al [A2]

Log Gen

Al1—A2

Bl

L1D

Comtp!g:;tors
MetaB [BO| B1
MetaA|[AOQ [Al

Log Reduction

» Reduce the size of on-chip log buffer based on write behaviors

[Log Ignorance} [Log Merging J

Multiple writes modify the same data
* Temporal locality of programs
* Only the oldest and newest data are required

A write does not modify the data
* E.g., copy and assignment!!]
* Old data == New data

Transaction

Write Log Buffer ———
[Al H Al] A=A0 | | LogGen | [MetaA] AL[AZ]
B=B0 f Addr
N J - >0
' T)A_?‘Zgl’n Al1—sA2 Comp!g:;tors
Log generator ignores this write i B=B1 !
. PO A=A2 MetaB | BO| B1
Does not produce log entry .ETX o B1 MotaA | A0 TAL
e L1D \

[1] LLC Deduplication@ICS’14

Log Reduction

» Reduce the size of on-chip log buffer based on write behaviors

[Log Ignorance}

A write does not modify the data
* E.g., copy and assignment!!]
* Old data == New data

AL T AL

\ J
Y

Log generator ignores this write

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* Does not produce log entry :
|

[1] LLC Deduplication@ICS’14

[Log Merging J

Multiple writes modify the same data
* Temporal locality of programs
* Only the oldest and newest data are required

Transaction

A=A0
B=B0
Tx_begin
A=Al
H B=B1
A=A2

i Tx_end

......................

» MetaA| Al [A2¢+—

Log Gen

Addr

Al1—A2

Bl

Log Buffer ———

rge

L1D

< 0
Comp!g:;tors Me
RN 1
MetaB [BO| B1
MetaA [AO [Ad-

Log Reduction

» Reduce the size of on-chip log buffer based on write behaviors

[Log Ignorance}

[Log Merging J

A write does not modify the data
* E.g., copy and assignment!!]
* Old data == New data

Transaction

A=A0
B=B0
Tx_begin
A=Al
H B=B1
A=A2

i Tx_end

......................

AL T AL

\ J
Y

Log generator ignores this write
* Does not produce log entry

[1] LLC Deduplication@ICS’14

Multiple writes modify the same data
* Temporal locality of programs
* Only the oldest and newest data are required

Log Buffer ———

Log Gen

> MetaA| Al | A2 +—
Addr

Al1—A2

Bl

L1D

> 0
Comp!g:;tors Merge
N 1
MetaB | BO| B1
MetaA | AO [Al-|«

In background

Log Update

» Use the new data in on-chip logs to in-place update the data region

12

Log Update

» Use the new data in on-chip logs to in-place update the data region

» Not block cacheline evictions
« Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

12

Log Update

» Use the new data in on-chip logs to in-place update the data region

» Not block cacheline evictions
« Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

-I:[?_Q_S_?__C_Eig? - Log Buffer Y —— PM —
A=AQ | Flush-bit —
. B=BO | A2 LogB [l MetaB [B0[B1 ReLgi%n
 Tx_begin | LogA [0] MetaA [AO[A2

A=Al | .) LT
i B=B1 | |Bl(evicted)| . —

PO = i Data

i A=A2 L1D Log Controller Seefor
@Tx_end . J

Log Update

» Use the new data in on-chip logs to in-place update the data region

» Not block cacheline evictions
« Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

Transaction

......................

2 Y
' []

i B=B0O |

i Tx_begin |
A=A1
B =B1
A=A2

~

.....................

Log Buffer —~

Flush-bit
A2 LogB MetaB [BO|[B1
LogA | O | MetaA |AO| A2
B1 (evicted) .
L1D Log Controller

\.

|

Only A2 is written to
the PM data region

12

Log Update

» Use the new data in on-chip logs to in-place update the data region

» Not block cacheline evictions
« Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

Transaction

......................

2 Y
' []

i B=B0O |

i Tx_begin |
A=A1
B =B1
A=A2

~

.....................

Log Buffer —~

Flush-bit
A2 LogB Ml-MetaB-BG{BL
LogA | 01-MetaA[AG|A2
B1 (evicted) .
L1D Log Controller

\.

(

.

Only A2 is written to
the PM data region

\

J

Other information in
logs is cleared on
chip after commit

~

12

Log Update

» Use the new data in on-chip logs to in-place update the data region

» Not block cacheline evictions
« Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

Transaction : Log Buffer n —PM— , \

. A=A0 | Flush-bit — Only A2 is written to

. B=BO | A2 LogB BMl-MetaB-BO{B1 Relr_gi% o | the PM data region |

 Tx_begin | LogA | @] MetaA[AC]|A2 | ‘

A=Al | \ PR N——— - N

. B=B1 | |Bl(evicted)| .) Other information in

. A=A2 | L1D Log Controller > R[;;;[gn logs is cleared on
@Tx_end) ’ — | chip after commit

» Benefits
« Write reduction: Don’t write logs to PM in common cases

* No ordering constraints: Don’t wait for flushing logs (and cachelines) to the log (and data) regions
12

Write Coalescing

—— — ——

} s | W1 (addr: 16), W2 (addr: 24), W3 (addr: 20), |
> S|IO a”OWS two Update paths Cachelines J—u LW4 (addr: 400), W5 (addr: 410), W6 (addr: 600) i
* 8B: Log in-place Updates (LU) CE LU | New data in logs

* 64B: Cacheline Evictions (CE) ¥ PM v

[On-PM Buffer

I R }

Physical Media

13

—— — ——

Write Coalescing
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

> SlIO a”OWS two Update pathS ICacheIines J—u iW4 (addr: 400), W5 (addr: 410), W6 (addr: 600) E

* 8B: Log in-place Updates (LU) CE LU

New data in logs

* 64B: Cacheline Evictions (CE) ¥ PM v

> LU and CE are coalesced |[©On-PMBuffer
In an on-PM buffer

I R }

Physical Media

13

Write Coalescing

> Silo allows two update paths [Geeines
* 8B: Log in-place Updates (LU) CE LU
e 64B: Cacheline Evictions (CE) . PM .

—— — ——

J_u i W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

» LU and CE are coalesced ||OnPMBuffer
|n an on-PM bUﬁer OW1->O W1, W2 > @ Wiliowss|W3Lowss, W3Highas | W2Highas

 W1-W3 have overlapped bytes

I R }

Physical Media

13

Write Coalescing

> Silo allows two update paths [Geeines
* 8B: Log in-place Updates (LU) CE LU
e 64B: Cacheline Evictions (CE) . PM .

—— — ——

J_u | W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

> LU and CE are coalesced On-PM Buffer
|n an on-PM bUﬁer OW1->O W1, W2 > @ Wiliowss|W3Lowss, W3Highas | W2Highas

O wi-> @ w4, W5
 W1-W3 have overlapped bytes
* W4-W5 are not overlapped

I R }

Physical Media

13

Write Coalescing

» Sllo allows two update paths o

—— — ———

J_u i W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

* 8B: Log in-place Updates (LU) CE LU | New data in logs
* 64B: Cacheline Evictions (CE) ¥ PM v
> LU and CE are coalesced ro”ﬁ”vsffjgm R T TS

. , Low4B Low4B, High4B High4B
iIn an on-PM buffer BOwio®wa e

 W1-W3 have overlapped bytes Cachelines - @ W6 - Cachelines

* W4-W5 are not overlapped

* W6 is merged into cachelines l --

Physical Media

13

—— — ——

Write Coalescing
W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

> SlIO a.”OWS two Update pathS ICacheIines J—u iW4 (addr: 400), W5 (addr: 410), W6 (addr: 600) E

* 8B: Log in-place Updates (LU) CE LU | New data in logs
* 64B: Cacheline Evictions (CE) ¥ PM v
> LU and CE are coalesced ro”ﬁ”viffjgm R T TS

. , Low4B Low4B, High4B High4B
iIn an on-PM buffer BOwio®wa e

 W1-W3 have overlapped bytes Cachelines - @ W6 - Cachelines

* W4-W5 are not overlapped

* W6 is merged into cachelines l --

Physical Media

> Correctness: No race risk

13

Write Coalescing

> Silo allows two update paths [Geeines
* 8B: Log in-place Updates (LU) CE LU
e 64B: Cacheline Evictions (CE) . PM .

> LU and CE are coalesced on-PM Buffer
In an on-PM buffer
 W1-W3 have overlapped bytes
* W4-W5 are not overlapped

——— ———

J_u i W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

O W1->O W1, W2 > @ Wiltowss | W3Lowss, W3Highas | W2Higha
D wi-> O w4, Ws
Cachelines =+ @ W6 -+ Cachelines

* W6 is merged into cachelines | l --

> Correctness: No race risk

®

AN

» Time

Physical Media

(@ Flush-bit in log is 1. CE updates the data region

A W (at txn commit)

A cE

13

Write Coalescing

> Silo allows two update paths [Geeines
* 8B: Log in-place Updates (LU) CE LU
e 64B: Cacheline Evictions (CE) . PM .

> LU and CE are coalesced on-PM Buffer
In an on-PM buffer
 W1-W3 have overlapped bytes
* W4-W5 are not overlapped

——— ———

J_u | W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),
L W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)

New data in logs

O W1->O W1, W2 > @ Wiltowss | W3Lowss, W3Highas | W2Higha
D wi-> O w4, Ws
Cachelines =+ @ W6 -+ Cachelines

* W6 is merged into cachelines | l --

> Correctness: No race risk

@
@

AN

» Time

8

» Time

Physical Media

(@ Flush-bit in log is 1. CE updates the data region

A W (at txn commit)

@ LU and CE are coalesced to update the data region

A cE

13

Write Coalescing

——— ———

} e | W1 (addr: 16), W2 (addr: 24), W3 (addr: 20), |
> S|IO a.”OWS two Update paths Cachelines J-u LW4 (addr: 400), W5 (addr: 410), W6 (addr: 600) i
* 8B: Log in-place Updates (LU) CE LU | New data in logs

* 64B: Cacheline Evictions (CE) ¥ PM v

> LU and CE are coalesced on-PM Buffer
|n an on-PM bUﬁer O W1->O W1, W2 > @ Wiltowss | W3Lowss, W3Highas | W2Higha

A wi-> O w4, W5

* W1-W3 have overlapped bytes Cachelines - @ W6 --- Cachelines
* W4-W5 are not overlapped
* W6 is merged into cachelines oo l --
. Physical Media
» Correctness: No race risk
D ANNA > Time | @ Flush-bit in log is 1. CE updates the data region A .
) Q » Time | @ LU and CE are coalesced to update the data region A LU (at txn commit)
CE
® A A& | Time | @ LU writes the data region. CE will not write twice*

* By using bit-level write reduction schemes, e.g., DCW@ISCA’09

Rare Cases

» Silo writes logs to guarantee correctness in two rare cases

[Log Overflow J [System Crash J

Rare Cases

» Silo writes logs to guarantee correctness in two rare cases

[Log Overflow J [System Crash J

The log buffer cannot . Flush undo logs to
hold all logs in one txn ensure atomicity

Rare Cases

» Silo writes logs to guarantee correctness in two rare cases

[Log Overflow J [System Crash J

The log buffer cannot . Flush undo logs to

hold all logs in one txn ensure atomicity
UtR 19001 | |01, | New,
Old, | New,

|
|
|
|
|
|
|
|
|
Log buffer I
|
|
|
|
|
|
|
|
|
|

PM

Rare Cases

» Silo writes logs to guarantee correctness in two rare cases

[Log Overflow J [System Crash J

The log buffer cannot . Flush undo logs to

|
[

|

|

|

|

hold all logs in one txn ensure atomicity I
|

|

U+R log,,,, Old_ | New. Log buffer :

|

Old, | New, :

|

|

|

Ulog, :

|

PM

Rare Cases

» Silo writes logs to guarantee correctness in two rare cases

[Log Overflow J [System Crash J

The log buffer cannot . Flush undo logs to

|
|

|

|

|

|

hold all logs in one txn ensure atomicity I
|

|

U+R log,,,, Old_ | New. Log buffer :

|

Old, | New, :

: I

' Flush-bit =0 I

: I

Ulog, | Data, :

|

PM

Rare Cases

» Silo writes logs to guarantee correctness in two rare cases

[Log Overflow J [System Crash J

The log buffer cannot . Flush undo logs to

|
|

|

|

|

|

hold all logs in one txn ensure atomicity I
|

|

U+R log,,,, Old_ | New. Log buffer :
P :

/ Old, | New, I

p ! |

In parallel ------> ' Flush-bit = 0 I

: I

Ulog, | Data, :

|

PM

Rare Cases

» Silo writes logs to guarantee correctness in two rare cases

[Log Overflow J

The log buffer cannot
hold all logs in one txn

Flush undo logs to
ensure atomicity

U+R log,,,, ol Now Log buffer
;
/ Old, | New,
In parallel ------> Flush-bit =0
Ulog, | Data,

PM

A system crash or
power failure occurs

[System Crash J

Old,

New,

,

Old,

New,

PM

—

Selectively flush
logs on demand

Rare Cases

» Silo writes logs to guarantee correctness in two rare cases

[Log Overflow J

The log buffer cannot
hold all logs in one txn

Flush undo logs to
ensure atomicity

U+R log,,,, ol Now Log buffer
;
/ Old, | New,
In parallel ------> Flush-bit =0
Ulog, | Data,

PM

A system crash or
power failure occurs

[System Crash J

old,

New,

Selectively flush
logs on demand

—

Uncommitted txns

,

old,

New,

y

Ulogs

PM

* Undo logs

i Atomicity]

Rare Cases

» Silo writes logs to guarantee correctness in two rare cases

[Log Overflow J

The log buffer cannot
hold all logs in one txn

Flush undo logs to
ensure atomicity

U+R log,,,, ol Now Log buffer
;
/ Old, | New,
In parallel ------> Flush-bit =0
Ulog, | Data,

PM

A system crash or
power failure occurs

[System Crash J

old,

New,

Selectively flush
logs on demand

l Atomicity]

—

Uncommitted txns

,

old,

New,

* Undo logs

Durability
Committed txns i]

A 4

Ulogs

Rlogs

PM

* Redo logs (flush-bit = 0)

Rare Cases

» Silo writes logs to guarantee correctness in two rare cases

[Log Overflow]

The log buffer cannot
hold all logs in one txn

Flush undo logs to
ensure atomicity

U+R log,,,, ol Now Log buffer
;
/ Old, | New,
In parallel ------> Flush-bit =0
Ulog, | Data,

PM

A system crash or
power failure occurs

[System Crash]

Old.,

New,

Selectively flush
logs on demand

—

,

old,

New,

Atomic
Uncommitted l“xnsi tomicity]
* Undo logs
* Revoke

i Durability]

Committed txns

A 4

Ulogs

Rlogs

PM

* Redo logs (flush-bit = 0)
* Replay

Recoverability @

14

Evaluation

» Benchmarks
 Micro-benchmarks
* Array, Btree, Hash, Queue, RBtree

e Macro-benchmarks
* TPCC, YCSB

» Comparisons

e Base: A hardware logging baseline
FWB!2l: The hardware logging design of FWB
MorLog3l: The morphable hardware logging
LAD!“: The logless atomic durability design
Silo: Our speculative logging design

Gemb5 Simulation

Processor
Cores 8 cores, x86-64, 2 GHz
L11/D Private, 64B per line, 32KB, 8-way, 4 cycles
L2 Private, 64B per line, 256KB, 8-way, 12 cycles
LLC Shared, 64B per line, 8MB, 16-way, 28 cycles
Mem Ctrl | FRFCFS, 64-entry queue in ADR domain
Log Buffer | 680B per core, FIFO, 8 cycles, battery-backed
Persistent Memory
Capacity | 16GB phase-change memory
Latency | Read / Write: 50 / 150 ns!!]

[1] HOOP@ISCA’20 [2] FWB@HPCA’18 [3] MorLog@ISCA’20 [4] LAD@MICRO’'19

Normalized Throughput

Transaction Throughput

Our work Our work
O Base FWB MorLog B LAD I @ Silo | O Base FWB MorLog & LAD I @ Silo I

92}

D

w

AL) ol ol]l ol

Array Btree Hash Queue RBtree TPCC YCSB Average Array Btree Hash Queue RBtree TPCC YCSB Average
1 core 8 cores

N

=

o

Silo improves throughput 1core | 8cores

Existing hardware logging designs 1.4x 4.3x

Existing hardware logless design (LAD) 1.1x 1.5x

16

Normalized Throughput

Transaction Throughput — [fsseeesmemser

Our work

(92

D

w

N

=

o

Our work
[0 Base FWB MorLog & LAD | @ Silo |

O Base FWB MorLog & LAD | @ Silo '

(0 o

Array Btree Hash Queue RBtree TPCC YCSB Average Array Btree Hash Queue RBtree TPCC
1 core 8 cores
Silo improves throughput 1core | 8cores
Existing hardware logging designs 1.4x 4.3x
Existing hardware logless design (LAD) 1.1x 1.5x

YCSB Average

16

Normalized Throughput

Transaction Throughput — [fsseeesmemser

(92

D

w

N

=

o

[0 Base FWB MorLog & LAD | @ Silo |

Our work

Our work

O Base FWB MorLog & LAD | @ Silo '

YCSB Average

Array Btree Hash Queue RBtree TPCC YCSB Average Array Btree Hash Queue RBtree TPCC
1 core 8 cores
_ _ _ Silo improves throughput 1core | 8cores
[Wait to persist logs and cachelines k
Existing hardware logging designs 1.4x 4.3x
Existing hardware logless design (LAD) 1.1x 1.5x

16

Normalized Throughput

Transaction Throughput [oo
Our work Our work
O Base FWB MorLog B LAD | @ Silo | O Base FWB MorLog & LAD I @ Silo I

(92

D

w

N

=

o

Array Btree Hash Queue RBtree TPCC YCSB Average Array Btree Hash Queue RBtree TPCC YCSB Average
1 core 8 cores

[_ _ _ Silo improves throughput 1core | 8cores
Wait to persist logs and cachelines k

Existing hardware logging designs 1.4x 4.3x

Wait to persist cachelines: Existing hardware logless design (LAD) 1.1x 1.5x
L1 - LLC - MC

16

Write Traffic

Our work Our work

L O Base FWB MorLog LAD l @ Silo ' O Base FWB MorLog LAD | @ Silo l
e
|q—) 41 = o - ¥]]
2 0.8 | | | | | 2108 1t N 7R
— E 7 o e
= 0.6 1IN | &0 N1 106 HN—\G—t— 11N 11—
O i % \ 3 i N % & \
Qo4 41NN e = N 04 NN |\ NN ||
£ 0.2 - a EW ffffffffffffffffffff N 0.2 1 % %W fffffffffffffff | =
g O | 1 1 Q_ll g_ll ﬁ_ll %_|I ml g_l O - 1 1 a_ll \§_|I g_ll ,g—ll ml \@_

Array Btree Hash Queue RBtree TPCC YCSB Average Array Btree Hash Queue RBtree TPCC YCSB Average

1 core 8 cores

84

Write Traffic

[0 Base FWB MorLog LAD l @ Silo '

Our work

(B
|
]

© o
o 00
|

4}
)

|
1
I
I
I
T
I
I
I
I
n
I
I
I
!
1
I
I
I
I
I
|

o
~
|

|

Our work

[0 Base FWB MorLog LAD | @ Silo l

,,,,,,,, o 1 Jd -
fffffffffffffffffffffffffff IR R e R e == ==

ffffffffff AN 02 4

. L

Normalized Write Traffic

o
—
=
=
B

1 core

[Logs are used to M

Silo

reduces write traffic by 76.5% over

Array Btree Hash Queue RBtree TPCC YCSB Average Array Btree Hash Queue RBtree TPCC

8 cores

Write logs and cachelines

existing hardware logging designs

YCSB Average

8%

Write Traffic

[0 Base FWB Mo

1 4 - _ . _

0.8 n ;E ************* ?— 77777777777777
i -

0.6 | = |l

o
~
|

|

Our work Our work

rLog LAD l @ Silo ' [0 Base FWB MorLog LAD | @ Silo l

,,,,,,,, L 1 Jd -
7] = 11 E A 7 w

777777777777777777777 1 0.8 @MWl

- . =]
=]

; 777777777777 22 = 06 T B ;{7777 ;77777 T - - - _;;777
8) % =

,,,,,,,,,, S R 04 - I I I 22— I I I R

ffffffffff 02 4 % @ e el =

ﬁ_l 1 %_l 1 =0 g_l O - 1 1 a_l 1 \§_| 1 g_l 1 ,g—l 1 m \@_

Normalized Write Traffic

o
—
=
=
B

Array Btree Hash Queue RBtree TPCC YCSB Average Array

1 core

[Logs are used to M

Silo

Btree

Hash Queue RBtree TPCC YCSB Average
8 cores

Write logs and cachelines

reduces write traffic by 76.5% over|existing hardware logging designs

exhibits approximate write traffic with

[Write coalescing ? Silo

LAD

{ Do not produce logs]

86

Overhead of Log Buffer

60
50
40
30
20
10

0

52 i Log ipnorance deminates] B The number of total log entries
20 E The number of remaining log entries
) Max. 680B per core]

37

28

22
20 19 18

13

Number of Logs
per transaction

Array Btree Hash Queue RBtree TPCC YCSB Average

Overhead of Log Buffer

60

50

22 i Log ignorance dominates]

B The number of total log entries

40

40 37

30

) Max. 680B per core]

E The number of remaining log entries

28

20
10

Number of Logs
per transaction

0

20

22
19 18

13

Array Btree Hash Queue RBtree TPCC YCSB Average
Battery consumption* Intel’s eADR BBB@HPCA’21 Our Silo
Flush Size for 8 cores (KB) 10,496 16 5.3125
Flush Energy (J) 54,377 194 62
Supercapacitor (size: mm?3; area: mm?) 151; 28.4 0.54; 0.66 0.17; 0.31
Lithium thin-film (size: mm?3; area: mm?) 1.51; 1.32 0.0054; 0.031 0.0017; 0.014

* Based on the energy calculation model from BBB@HPCA’21

18

Overhead of Log Buffer

60
2 c 50 1 22 i Log ignorance dominates] [l The number of total log entries
o .8 20 | 27 40 @ The number of remaining log entries
«— © i
S 2 30 |) Max. 680B per core])3
Q . 19 22
e S 20 - 20 s 8
Z a 10 4 6 5 8
O -
Array Btree Hash Queue RBtree TPCC YCSB Average
Battery consumption* Intel’s eADR BBB@HPCA’21 Our Silo
Flush Size for 8 cores (KB) 10,496 16 e

[eADR] 888.2x; 91.6x

Flush Energy (W) 54,377 194 | [BBB] 3.2x; 2.1x
_
Supercapacitor (size: mm?3; area: mm?) 151; 28.4 0.54; 0.66 0.17; 0.31
Lithium thin-film (size: mm?3; area: mm?) 1.51; 1.32 0.0054; 0.031 0.0017; 0.014

* Based on the energy calculation model from BBB@HPCA’21

18

More Results

» Handle large transactions
* Log overflow occurs
* Throughput decreases by only 7.4%

» Change latency of log buffer
« A 128-cycle log buffer only decreases
the throughput by 3.3% over an 8-cycle one

Find more details in our paper!

oix F |4 mx e

Y A3y —4-Btres 8 ash —+-Queus -O-ABtree -O-TPOC -X-VCSB

£y
3t

Amsy St mash Queus RBves TPCC YCSS Aversge
(2} The normalized transaction throughput

Dix B2 Bax e 6

Arrey Biree Hash Cueue Ritree TACC | VCS3 Average
(b) The normalized PM write trafic
Fig. 14. The transaction performance on different sizes of the write set

overflowed logs 1o be flushed in parallel with generating new
logs. Fig. 14b shows that the write traffic only increases by
up to 1.9 on average since Silo flushes the overflowed undo
logs in a baich manner to mitigate the write amplification
to PM media. The performance on Bt ree, Hash, Queue
and RBt ree decrease when running large iransactions due to
ng extra overflowed logs. Note that Array shows stable
performance since most of the logs are ignored as analyzed
in § VI-D. Hence, the logs do not frequently overflow. More-
over, the results on TPCC and YCSE keep stable due to their
good locality, which enables substantial logs to be merged on
chip. Tn summary, the log overflow does not always occur
in large transactions. Even if it occus lo does not abort

or incur severe

G. Performance Sensitivity to the Latency of Log Buffer

We study how the access latency of the log buffer affects
the performance. We change the latency from § to 128 cycles
1o cover various buffer types (e.g.. SRAM). The throughputs
of micro-/macro-benchmarks are normalized to Array/TPCC
using an 8-cycle buffer. Fi; shows that the throughput
generally keeps stable when increasing the latency. In Silo,
the CPU store does not need to wait for writing logs to
the buffer during transaction execution, and the new data in
logs are read from the buffer 0 update the data region in the
kground after commit. Thus, reading or writing the log
buffer is not on the critical path. Using a 128-cycle buffer
only decreases the throughput by 3

% over an 8-cycle one
on average. Moreover, the write traffic is not affected when
changing the latency. In summary. the latency of log buffer
has negligible effect on the efficiency of Silo.

VIL. RELATED WORK

WAL for Atomic Durability. Software loggings [12], [14].
[48], [56] rely on CPU insiructions io enforce the durability or-
der between logs and data. DudeTM [34] and SoftWrAP [17)
use a DRAM cache to remove the persist operations from the
critical path. but need to track the data versions. Unlike these
studies, Silo adopts the hardware logging approach.
Hardware logging efficiently overlaps the log operations and
transaction execution. Prior hardware undo loggings [28]. [46]
need to persist all the updated data before commit. ASAP [2]
asynchronously persists the undo logs and the updated data

B e o = S
e e e

40 48 S6 64 72 0 885 95 104 112 120 128
Access latency of log buffer (cycles)

The normalized transaction throughput on different buffer latencies.

5 18 2 32

Narmalized Throughput

after commit, but need to track the data and control dependen-
cies. Existing redo schemes [16]. [25], [27]. [51] enforce the
ordering between redo logs and data. DHTM [27] writes redo
logs to provide durability for hardware transactional mem-
ory, but the transaction size is limited by LLC. CCHL [51]
compresses and consolidates logs to reduce writes. Legacy
undo+redo designs [38], [52] exploit the benefits of undo and
redo loggings, but still write extra logs. Unlike them, Silo uses
the on-chip logs to directly in-place update the data region in
common failure-free cases, thus reducing the overheads.
Multi-Versioning Schemes for Atomic Durabilit;
durability can be ensured by multi-versioning [10]. [18]. [35].
[61]. Kiln [61] uses a non-volatile last level cache (NVLLC) to
store the updated data. LAD buffers the updated cachelines in
memory controller until committed to PM. Kamino-Tx [35]
maintains the main and backup versions of data regions in
PM. HOOP [10] designs an indirection layer that redirects the
addresses for out-of-place updates. Unlike them, Silo adopts
hardware logging to ensure atomic durability, while enabling
in-place updaies without the needs of NVLLC, data region
backups, and physical address redirections.
Crash Consistency for Single Operations. Some studies
guarantee the crash consistency for single operations on PM.
They can be divided into two categories. First, the software-
based data structures, such as NVTree [59], Fast&Fair [20],
Level Hashing [64]. and MOD [19], leverage customized
schemes o ensure the consisiency for single updates. Second,
the hardware-based schemes, such as eADR [22] and BBB [5],
adopt battery-backed caches to persist CPU writes. Orthogonal
to these studies. our Silo focuses on the atomic durability for
a group of updates based on the ACID transaction.
VIII. CONCLUSION

In order to ensure atomic durability for persistent memory
(PM), this paper proposes Silo, a speculative hardware logging
approach that leverages the new data in the on-chip logs to in-
place update the PM data region in common failure-free cases.
Hence, it is unnecessary to write logs o the PM log region to
back up data. thus improving the performance and reducing
the overheads. Only in rare cases, e.g.. system crashes, Silo
selectively flushes necessary on-chip logs to PM for data
recovery without any loss of correctness. Experimenial results
demonsiraie that Silo significanily outperforms staie-of-the-art
studies in terms of iransaction throughput and write traffic.

ACKNOWLEDGMENTS

This work was supported in part by National Natural Sci-
ence Foundation of China (NSFC) under Grant No. 62125202
and U22B2022, and Key Laboratory of Information Storage
System, Ministry of Education of China,

19

Conclusion

» Ensuring atomic durability becomes important for PM

Conclusion

» Ensuring atomic durability becomes important for PM

» Prior hardware logging studies: Log as Backup
« Heavy writes to PM
* Ordering constraints between persisting logs and data

20

Conclusion

» Ensuring atomic durability becomes important for PM

» Prior hardware logging studies: Log as Backup
« Heavy writes to PM
* Ordering constraints between persisting logs and data

» We propose a speculative logging design Silo: Log as Data
« Use on-chip logs to in-place update data (Make common case fast)
« Write logs to back up data in rare cases (Guarantee recoverability)

Conclusion

» Ensuring atomic durability becomes important for PM

» Prior hardware logging studies: Log as Backup
« Heavy writes to PM
* Ordering constraints between persisting logs and data

» We propose a speculative logging design Silo: Log as Data
« Use on-chip logs to in-place update data (Make common case fast)
« Write logs to back up data in rare cases (Guarantee recoverability)

> Benefits

* I[mprove transaction throughput
 Reduce write traffic to PM

* Low hardware overhead

Thank you!

