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=» Ensure atomic durability
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Atomic Durability

» A group of updates are written to PM in an all or nothing manner
» Current 64-bit CPUs only support 8B atomic writel-3!
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Hardware Logging

Software Logging
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write Log
flush Log
sfence
write data
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sfence

Tx_end

Log operations exist on the critical path

Throughput decreases by up to 70%!!!
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......................

2 Y
' []

i B=B0O |

i Tx_begin |
A=A1
B =B1
A=A2

~

.....................

Log Buffer —~

Flush-bit
A2 LogB Ml-MetaB-BG{BL
LogA | 01-MetaA[AG|A2
B1 (evicted) .
L1D Log Controller

\.

(

.

Only A2 is written to
the PM data region

\

J

Other information in
logs is cleared on
chip after commit

~
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Log Update

» Use the new data in on-chip logs to in-place update the data region

» Not block cacheline evictions
« Set the flush-bit to 1 to discard the log after commit if an updated cacheline is evicted

Transaction : Log Buffer n —PM— , \

. A=A0 | Flush-bit — Only A2 is written to

. B=BO | A2 LogB BMl-MetaB-BO{B1 Relr_gi% o | the PM data region |

 Tx_begin | LogA | @] MetaA[AC]|A2 | ‘

A=Al | \ PR N——— - N

. B=B1 | |Bl(evicted)| . ) Other information in

. A=A2 | L1D Log Controller > R[;;;[gn logs is cleared on
@Tx_end ) ’ — | chip after commit

» Benefits
« Write reduction: Don’t write logs to PM in common cases

* No ordering constraints: Don’t wait for flushing logs (and cachelines) to the log (and data) regions
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> Silo allows two update paths [Geeines
* 8B: Log in-place Updates (LU) CE LU
e 64B: Cacheline Evictions (CE) . PM .
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In an on-PM buffer
 W1-W3 have overlapped bytes
* W4-W5 are not overlapped

——— ———

J_u i W1 (addr: 16), W2 (addr: 24), W3 (addr: 20),

W4 (addr: 400), W5 (addr: 410), W6 (addr: 600)
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Write Coalescing

——— ———

} e | W1 (addr: 16), W2 (addr: 24), W3 (addr: 20), |
> S|IO a.”OWS two Update paths Cachelines J-u LW4 (addr: 400), W5 (addr: 410), W6 (addr: 600) i
* 8B: Log in-place Updates (LU) CE LU | New data in logs

* 64B: Cacheline Evictions (CE) ¥ PM v

> LU and CE are coalesced on-PM Buffer
|n an on-PM bUﬁer O W1->O W1, W2 > @ Wiltowss | W3Lowss, W3Highas | W2Higha

A wi-> O w4, W5

* W1-W3 have overlapped bytes Cachelines - @ W6 --- Cachelines
* W4-W5 are not overlapped
* W6 is merged into cachelines oo l ----------------------------------------
. Physical Media
» Correctness: No race risk
D ANNA > Time | @ Flush-bit in log is 1. CE updates the data region A .
) Q » Time | @ LU and CE are coalesced to update the data region A LU (at txn commit)
CE
® A A& | Time | @ LU writes the data region. CE will not write twice*

* By using bit-level write reduction schemes, e.g., DCW@ISCA’09
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Rare Cases

» Silo writes logs to guarantee correctness in two rare cases

[ Log Overflow ]
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Evaluation

» Benchmarks
 Micro-benchmarks
* Array, Btree, Hash, Queue, RBtree

e Macro-benchmarks
* TPCC, YCSB

» Comparisons

e Base: A hardware logging baseline
FWB!2l: The hardware logging design of FWB
MorLog3l: The morphable hardware logging
LAD!“: The logless atomic durability design
Silo: Our speculative logging design

Gemb5 Simulation

Processor
Cores 8 cores, x86-64, 2 GHz
L11/D Private, 64B per line, 32KB, 8-way, 4 cycles
L2 Private, 64B per line, 256KB, 8-way, 12 cycles
LLC Shared, 64B per line, 8MB, 16-way, 28 cycles
Mem Ctrl | FRFCFS, 64-entry queue in ADR domain
Log Buffer | 680B per core, FIFO, 8 cycles, battery-backed
Persistent Memory
Capacity | 16GB phase-change memory
Latency | Read / Write: 50 / 150 ns!!]

[1] HOOP@ISCA’20 [2] FWB@HPCA’18 [3] MorLog@ISCA’20 [4] LAD@MICRO’'19



Normalized Throughput
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Write Traffic
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Overhead of Log Buffer
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Battery consumption* Intel’s eADR BBB@HPCA’21 Our Silo
Flush Size for 8 cores (KB) 10,496 16 5.3125
Flush Energy (J) 54,377 194 62
Supercapacitor (size: mm?3; area: mm?) 151; 28.4 0.54; 0.66 0.17; 0.31
Lithium thin-film (size: mm?3; area: mm?) 1.51; 1.32 0.0054; 0.031 0.0017; 0.014

* Based on the energy calculation model from BBB@HPCA’21
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More Results

» Handle large transactions
* Log overflow occurs
* Throughput decreases by only 7.4%

» Change latency of log buffer
« A 128-cycle log buffer only decreases
the throughput by 3.3% over an 8-cycle one

Find more details in our paper!

oix F |4 mx e

Y A3y —4-Btres 8 ash —+-Queus -O-ABtree -O-TPOC -X-VCSB

£y
3t

Amsy St mash Queus RBves TPCC  YCSS Aversge
(2} The normalized transaction throughput

Dix B2 Bax e 6

Arrey  Biree Hash Cueue Ritree TACC | VCS3 Average
(b) The normalized PM write trafic
Fig. 14. The transaction performance on different sizes of the write set

overflowed logs 1o be flushed in parallel with generating new
logs. Fig. 14b shows that the write traffic only increases by
up to 1.9 on average since Silo flushes the overflowed undo
logs in a baich manner to mitigate the write amplification
to PM media. The performance on Bt ree, Hash, Queue
and RBt ree decrease when running large iransactions due to
ng extra overflowed logs. Note that Array shows stable
performance since most of the logs are ignored as analyzed
in § VI-D. Hence, the logs do not frequently overflow. More-
over, the results on TPCC and YCSE keep stable due to their
good locality, which enables substantial logs to be merged on
chip. Tn summary, the log overflow does not always occur
in large transactions. Even if it occus lo does not abort

or incur severe

G. Performance Sensitivity to the Latency of Log Buffer

We study how the access latency of the log buffer affects
the performance. We change the latency from § to 128 cycles
1o cover various buffer types (e.g.. SRAM). The throughputs
of micro-/macro-benchmarks are normalized to Array/TPCC
using an 8-cycle buffer. Fi; shows that the throughput
generally keeps stable when increasing the latency. In Silo,
the CPU store does not need to wait for writing logs to
the buffer during transaction execution, and the new data in
logs are read from the buffer 0 update the data region in the
kground after commit. Thus, reading or writing the log
buffer is not on the critical path. Using a 128-cycle buffer
only decreases the throughput by 3

% over an 8-cycle one
on average. Moreover, the write traffic is not affected when
changing the latency. In summary. the latency of log buffer
has negligible effect on the efficiency of Silo.

VIL. RELATED WORK

WAL for Atomic Durability. Software loggings [12], [14].
[48], [56] rely on CPU insiructions io enforce the durability or-
der between logs and data. DudeTM [34] and SoftWrAP [17)
use a DRAM cache to remove the persist operations from the
critical path. but need to track the data versions. Unlike these
studies, Silo adopts the hardware logging approach.
Hardware logging efficiently overlaps the log operations and
transaction execution. Prior hardware undo loggings [28]. [46]
need to persist all the updated data before commit. ASAP [2]
asynchronously persists the undo logs and the updated data

B e o = S
e e e

40 48 S6 64 72 0 885 95 104 112 120 128
Access latency of log buffer (cycles)

The normalized transaction throughput on different buffer latencies.

5 18 2 32

Narmalized Throughput

after commit, but need to track the data and control dependen-
cies. Existing redo schemes [16]. [25], [27]. [51] enforce the
ordering between redo logs and data. DHTM [27] writes redo
logs to provide durability for hardware transactional mem-
ory, but the transaction size is limited by LLC. CCHL [51]
compresses and consolidates logs to reduce writes. Legacy
undo+redo designs [38], [52] exploit the benefits of undo and
redo loggings, but still write extra logs. Unlike them, Silo uses
the on-chip logs to directly in-place update the data region in
common failure-free cases, thus reducing the overheads.
Multi-Versioning Schemes for Atomic Durabilit;
durability can be ensured by multi-versioning [10]. [18]. [35].
[61]. Kiln [61] uses a non-volatile last level cache (NVLLC) to
store the updated data. LAD buffers the updated cachelines in
memory controller until committed to PM. Kamino-Tx [35]
maintains the main and backup versions of data regions in
PM. HOOP [10] designs an indirection layer that redirects the
addresses for out-of-place updates. Unlike them, Silo adopts
hardware logging to ensure atomic durability, while enabling
in-place updaies without the needs of NVLLC, data region
backups, and physical address redirections.
Crash Consistency for Single Operations. Some studies
guarantee the crash consistency for single operations on PM.
They can be divided into two categories. First, the software-
based data structures, such as NVTree [59], Fast&Fair [20],
Level Hashing [64]. and MOD [19], leverage customized
schemes o ensure the consisiency for single updates. Second,
the hardware-based schemes, such as eADR [22] and BBB [5],
adopt battery-backed caches to persist CPU writes. Orthogonal
to these studies. our Silo focuses on the atomic durability for
a group of updates based on the ACID transaction.
VIII. CONCLUSION

In order to ensure atomic durability for persistent memory
(PM), this paper proposes Silo, a speculative hardware logging
approach that leverages the new data in the on-chip logs to in-
place update the PM data region in common failure-free cases.
Hence, it is unnecessary to write logs o the PM log region to
back up data. thus improving the performance and reducing
the overheads. Only in rare cases, e.g.. system crashes, Silo
selectively flushes necessary on-chip logs to PM for data
recovery without any loss of correctness. Experimenial results
demonsiraie that Silo significanily outperforms staie-of-the-art
studies in terms of iransaction throughput and write traffic.
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» Ensuring atomic durability becomes important for PM

» Prior hardware logging studies: Log as Backup
« Heavy writes to PM
* Ordering constraints between persisting logs and data

» We propose a speculative logging design Silo: Log as Data
« Use on-chip logs to in-place update data (Make common case fast)
« Write logs to back up data in rare cases (Guarantee recoverability)

> Benefits

* I[mprove transaction throughput
 Reduce write traffic to PM

* Low hardware overhead




Thank you!



