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Abstract
Persistent memory (PM) suffers from data security and crash con-

sistency issues due to non-volatility. Counter-mode encryption

(CME) and bonsai merkle tree (BMT) have been adopted to ensure

data security by using security metadata. The data and its security

metadata need to be atomically persisted for correct recovery. To

ensure crash consistency, durable transactions have been widely

employed. However, the long-time BMT update increases the trans-

action latency, and the security metadata incur heavy write traffic.

This paper presents Secon to ensure SEcurity and crash CONsis-

tency for PM with high performance. Secon leverages a scalable

write-through metadata cache to ensure the atomicity of data and

its security metadata. To reduce the transaction latency, Secon pro-

poses a transaction-specific epoch persistency model to minimize

the ordering constraints. To reduce the amount of PM writes, Secon

co-locates counters with log entries and coalesces BMT blocks. Ex-

perimental results demonstrate that Secon significantly improves

the transaction performance and decreases the write traffic.

1 Introduction
Persistentmemory (PM) offers salient features including non-volatility,

high density and DRAM-like performance. The data in PM survive

crashes, which however causes data remanence vulnerabilities, e.g.,

an attacker can obtain the data via stealing the PM DIMM or snoop-

ing the memory bus [2]. Counter-mode encryption (CME) [22] has

been proposed to encrypt data on chip to protect the confiden-

tiality. As counters can be replayed or tampered by attackers, the

integrity trees, e.g., bonsai merkle tree (BMT) [19], further verifies

data integrity to build secure PM systems. For each counter write,

all layers of blocks in a BMT are updated. Any counter tampering

can be detected by recomputing BMT blocks for value comparisons.

Moreover, since the data in PM are not lost after a crash, the

data are required to be recovered to a consistent state (i.e., crash

consistency). Unfortunately, the atomic write is only 8B in 64-bit

CPUs [11]. To ensure that the data larger than 8B are atomically

modified in PM, durable transactions with write-ahead-logging [12]

are widely leveraged to guarantee that either “none” or “all” of a

group of data are updated in PM. Furthermore, to correctly decrypt

and verify data after a crash, it is critical to ensure that the data

and its security metadata are atomically updated [13]. Otherwise,

the data will be mistakenly decrypted by a mismatched counter.

Ensuring security and crash consistency becomes important for

PM, which is however difficult to guarantee. An intuitive solution

is to use transactions on secure PMs, but this incurs high overheads
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due to two reasons: 1) The long latency of BMT update exists on

the critical path. Each write in a transaction is stalled until the BMT

root of the log entry is updated, which increases the transaction

execution latency. 2) The security metadata incur substantial mem-

ory writes. The requirement of atomically updating data and its

security metadata, i.e., counter and BMT blocks, causes 3× writes,

which shortens the PM lifetime and decreases system performance.

State-of-the-art designs fail to effectively guarantee data secu-

rity and crash consistency for PMs. STAR [10], Traid-NVM [3],

Anubis [26], cc-NVM [23], and Osiris [24] protect data confiden-

tiality and integrity, but do not consider transaction-based failure-

atomicity guarantee for a group of updates. SCA [13] and Super-

Mem [27] guarantee the crash consistency for data and its counter in

transactions, but they do not consider data integrity, thus overlook-

ing the expensive BMT updates. SCA proposes a selective counter

atomicity scheme to reduce writes. However, for transactions that

do not know the write set in advance [12], the memory barrier after

each log write increases latency, thus decreasing the efficiency of

SCA. SuperMem adopts a write-through counter cache to atomi-

cally persist the data and its counter by using a register. However,

it becomes inefficient when extended to include the BMT integrity

verification, since the register in SuperMem is occupied until the

BMT root is updated, which stalls all subsequent memory writes.

In this paper, we propose Secon to efficiently guarantee the SEcu-

rity and crash CONsistency for PM. There are three contributions

behind Secon. First, Secon proposes a scalable write-through

security metadata cache to atomically write data and its security

metadata with high scalability. Based on our observation that in

durable transactions there is always a consistent data version in

PM (e.g., in log region or data region), Secon pre-persists the data

and its security metadata from the register to PM without waiting

for the BMT root to be updated. Hence, updating the BMT root

is moved to the background, and the register is released early to

allow the independent writes to be processed without waiting for

a long time, thus improving the scalability. Second, to mitigate the

ordering overheads in transactions for low latency, Secon proposes

a transaction-specific epoch persistency model to only allow

the order between the in-place write and its log. Third, Secon co-

locates the counter with the log entry and coalesces the BMT

blocks to reduce the heavy write traffic caused by the security

metadata, thus improving the PM endurance. Experimental results

show that Secon respectively reduces the transaction latency and

memory writes by 51% and 32% over the standard write-though

scheme, and reduces the latency by 41% over SuperMem [27].

2 Background and Motivation

2.1 Threat Model

In general, the domain of a processor chip is considered to be

secure [2, 6, 7, 13, 21, 25, 27], while the off-chip resources (e.g.,

memory bus and PM) can be attacked. An attacker can carry out

physical access based attacks to obtain the data in PM via stealing the

DIMMor snooping thememory bus to violate the confidentiality [2].

Moreover, the attacker can replay or tamper with the data in PM

to break the integrity [26]. This paper aims to defend against these
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Figure 1. The process of

counter-mode encryption.

Figure 2. The structure of

bonsai merkle tree.

attacks to protect the security (i.e., confidentiality and integrity)

for the data stored in PM like prior studies [10, 19, 26].

2.2 Security Guarantee

Confidentiality Protection. Counter-mode encryption (CME)

has been widely used to encrypt cachelines in the on-chip mem-

ory controller [2, 6, 7, 13, 21, 25, 27]. As shown in Fig. 1, an AES

engine generates a one-time pad (OTP) to XOR with the plaintext

cacheline to complete encryption. Hence, the cacheline becomes

ciphertext when transmitted in the memory bus and stored in PM,

thus protecting the confidentiality. When reading a cacheline from

PM, CME decrypts the data by XORing the ciphertext with the

OTP. The hot-spot counters are buffered in an on-chip counter

cache, so the OTP generation can be overlapped with the ciphertext

read to accelerate decryption. An OTP is generated using a private

on-chip key, the physical line address, and a per-line counter block.

A counter block (64B) contains one 64-bit major counter (Mc) and

64 7-bit minor counters (mc). Each mc corresponds to a cacheline.

Hence, a counter block covers 64 cachelines in a 4KB page. For each

memory write, the mc increases by 1 to generate a different OTP

for encryption, which ensures that the OTP is never reused for a

high security level. If a mc overflows, the Mc increases by 1 and all

the mcs in this counter block are reset to 0 to re-encrypt the page

for strong security guarantee [22].

Integrity Protection. Based on CME, the bonsai merkle tree

(BMT) [19] verifies the integrity of the counter blocks. Fig. 2 shows

the structure of BMT. A BMT block is 64B, which contains 8 CMACs

(Counter Message Authentication Code). Each CMAC is 8B, which

is computed by hashing (e.g., SHA-1) a lower-level 64B BMT block

with an on-chip security key. Particularly, each CMAC in the first-

level BMT block is computed using a 64B counter block. The counter

blocks are leaf nodes in a BMT. Hence, one first-level BMT block

cover 8 counter blocks, i.e., 8 pages. The root of BMT is stored in

a non-volatile register on chip, which is not lost after a crash or

power failure. For each memory write, after the counter block is

updated, the entire BMT is updated from all the first level BMT

blocks up to the root. The hot-spot BMT blocks are buffered in an

on-chip BMT cache. When fetching a counter block from PM, this

counter block is verified by calculating its parent BMT blocks layer

by layer until finding a matched one in the BMT cache. In the worst

case, this verification is processed up to the root.

2.3 Crash Consistency Guarantee

There are two requirements to ensure the crash consistency in the

secure PM. First, the data itself needs to be atomically persisted.

Since the atomic write is only 8B in 64-bit CPUs [11], the data

larger than 8B are possible to be partially updated after a crash. To

avoid this, write-ahead-logging (WAL) [15] in durable transactions

is generally used to ensure the atomicity and durability for a group

of writes. WAL first backs up old/new data in undo/redo logs, and
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Figure 3. (a) The register is occupied for a long time. (b) The register

is released as soon as possible to improve the scalability.

then updates the in-place data. The write order between logs and

data is guaranteed by using memory barriers (e.g., sfence). Even

if a crash occurs when modifying the in-place data, the data can

be recovered from logs to ensure consistency. For redo logging,

the memory reads are redirected to the log region to identify the

newest data. To avoid such redirections, our paper leverages undo

logging in durable transactions to atomically persists a set of writes.

Second, the data and its security metadata (i.e., counters and

BMT blocks) need to be atomically persisted for correct decryption

and verification after a crash. Otherwise, we cannot trust the data.

For example, if the data has been persisted to PM but its counter

has not, the data cannot be correctly decrypted since the counter is

inconsistent with the data. Moreover, if the data and the counter

have been persisted but the BMT blocks have not, the data still

cannot be correctly decrypted if the counter has been attacked.

2.4 Motivation

The Choices of Metadata Caches. To ensure crash consistency

for secure PMs, there are two design choices for the security meta-

data cache to atomically persist the data and its security metadata,

i.e., write-back [13] and write-through [27]. The write-back cache

merges the updated metadata in cache, which reduces the metadata

writes but requires new primitives to explicitly flush these metadata

to PM [13], which makes it hard to port applications from unsecure

PM to secure PM. To avoid this, we leverage the write-through

cache that writes data along with its security metadata to PM.

Challenge. In the legacy write-through scheme [27], the long BMT

update latency leads to low utilizations of the write pending queue

(WPQ) and register in memory controller for a long time. As shown

in Fig. 3a, though an in-flight write (e.g., DataA) is independent of

the subsequent writes (e.g., DataB) in the WPQ, these subsequent

writes are stalled until the register is released, which significantly

decreases the throughput.

Insight.We observe that a transaction always maintains a consis-

tent copy of data in the log region or data region. This observation

brings our insight that the long-time occupation of the register

or WPQ can be avoided. Specifically, the memory controller can

persist the data and its metadata in advance, and release the register

as soon as possible, leaving the BMT update to be executed in the

background, as shown in Fig. 3b. Even if a crash occurs, the system

can recover to a consistent state by using the correct logs or data.

Based on this insight, we propose Secon to ensure security and

crash consistency for PM with high scalability and performance.

3 The Secon Design

3.1 Overview

Fig. 4 illustrates the architecture of Secon. In the memory controller

(MC), the write-through counter cache and BMT cache respectively

store hot counters and BMT blocks. Thewrite pending queue (WPQ)
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Figure 4. The architecture overview of Secon.

and a counter track bitmap are maintained in the battery-backed

ADR domain [1], in which all the contents will be persisted to

PM once a power failure or a crash occurs. In the L1 data cache

controller, a Transaction-specific Epoch Persistency (TEP) manager

relaxes the ordering constraints between undo logs and data. We

rely on software schemes in the program such as locking [5] to

guarantee the isolation between transactions that have conflicting

accesses to the same data. When a cacheline is flushed to MC, the

MC encrypts the cacheline and appends the tuple of <ciphertext,

counter, first-level CMACs> (calledmemory tuple) to the WPQ. The

tuples are coalesced in WPQ and atomically written to PM.

3.2 Scalable Write-through Metadata Cache

Secon designs a scalable write-throughmetadata cache to pre-persist

the memory tuple to PM to remove the competitions of the reg-

ister, thus enhancing the scalability. To ensure the atomicity of

the data and its security metadata, we use a register in MC to

temporarily store the memory tuple, i.e., <ciphertext, counter, first-

level CMACs>. It is sufficient to only persist the first-level CMACs

since we can rebuild a BMT by hashing the counters. Unlike Super-

Mem [27] that persists the memory tuple after updating the BMT

root, Secon persists this tuple once it is stored in the register, thus

moving the expensive BMT update to the background. In this way,

all the independent writes can be served by MC once the register

is released, which significantly improves the throughput.

Pre-persisting the memory tuple incurs a challenge that the

new BMT root rebuilt after a system crash cannot match the on-

chip old root even if no attack occurs. To tackle this challenge,

Secon adds two structures in MC to index the updated metadata

for recovery. First, the pending BMT update queue buffers the 48-bit

physical addresses of CMACs that correspond to the write requests.

Second, the counter track bitmap uses 64 bits as a unit, and each unit

corresponds to a counter block. Each bit in the unit records which

minor counter in the counter block is pre-persisted. The number

of entries in the pending BMT update queue and the units in the

counter track bitmap are both set to be 16, which consume 224B

spaces. Note that for a 64-bit CMAC, using its 54 bits is sufficiently

secure [20]. Secon hence leverages the unused 10 bits to record

the ID of the counter block that is currently inconsistent with the

First-level CMACs

Counter block

CMAC8

Mc mc64
id=n

n*64-bit48-bit ADR

Figure 5. Guaranteeing the consistency between the off-chip coun-

ters and on-chip BMT root.

on-chip BMT root. Fig. 5 shows the two structures. Supposing that

the MC currently processes the data whose minor counter is mc1

and CMAC is CMAC1. � After the counter and ciphertext are stored

in the register, Secon stores the address of CMAC1 in the pending

BMT update queue, searches the counter track bitmap for a free

unit, and sets its first bit to 1 for mc1. � The ID of this unit (i.e., 1)

is stored in the unused bits of CMAC1. � After storing the first-level

CMACs to the register, Secon adds the memory tuple to WPQ.

For background BMT update, Secon uses the CMACs (e.g., CMAC1)

according to the addresses in the pending BMT update queue to

update the BMT root. Existing BMT update schemes, such as stream-

lining update [6] and bonsai merkle forests [7], can be adapted in

this process for fast BMT update. During the BMT update, Secon

uses the ID stored in the unused bits of CMAC1 to read the 64-bit

unit in the counter track bitmap. After updating the BMT, Secon

resets the bits that are previously recorded in the unit. If the unit

is equal to 0, Secon deletes the entry in the pending BMT update

queue. Afterwards, the unused bits in CMAC1 are set to 0 in the BMT

cache, and CMAC1 is written to PM.

In crash recovery, Secon traverses the first-level blocks of BMT to

identify the CMACs whose unused bits are not 0. Since the counter

track bitmap locates in ADR, it can provide the locations of the

minor counters that have been pre-persisted while the BMT root

has not been updated after crashes. Secon reads the 64-bit unit in

the counter track bitmap based on the ID in the unused bits of a

CMAC. According to the unit, Secon decreases the minor counters

by 1 to keep the consistency between counters and the on-chip

BMT root. Finally, the BMT is rebuilt by these counters.

3.3 Transaction-specific Epoch Persistency

The background BMT update is efficient for independent writes.

However, in transactions, since the data need to be updated after

persisting its undo log to ensure atomicity, this ordering constraint

incurs extra dependencies between writes, causing unnecessary

BMT update latency in the critical path. For example, Fig. 6 shows

a dynamic transaction, in which the write set is not predefined [12].

DataA and DataB do not have a dependency, and LogB is persisted

to PM together with WriteA. However, since WriteA is ordered after

LogA, LogB has to be delayed after LogA. Moreover, since WriteB

is ordered after LogB, WriteB has to be delayed after WriteA, as

shown in Fig. 7a. Therefore, LogB (or DataB) need to wait for the

BMT updates of LogA (or DataA), thus causing unnecessary latency

between persisting independent DataA and DataB.

To reduce ordering constraints, the epoch persistency model [17]

divides a program into multiple epochs by memory barriers. All

writes inside an epoch can be concurrently persisted. Only different

epochs need to be persisted in order. For static transactions that

predefine the write sets, epoch persistency works well since only

one barrier is added between writing all the undo logs and new data,

as shown in Fig.7b. However, for the widely used dynamic trans-

actions without predefined write sets [12], a barrier is added after

each log write, which weakens the efficiency of epoch persistency.
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transactions.

To minimize the ordering constraints in both static and dynamic

transactions, Secon proposes a Transaction-specific Epoch Persis-

tency (TEP) model. TEP extends the epoch persistency model by

supporting paired epoch, i.e., two adjacent epochs are paired. The

writes in the same pair are persisted as the epoch order, but dif-

ferent pairs are concurrently persisted. A regular epoch needs to

be persisted after the previous paired and regular epochs. Fig. 6

shows an example of using TEP in a dynamic transaction, in which

LW (DW) stands for the log write (data write). The epochs of 𝑒1,
𝑒2, 𝑒3 are divided into two pairs, in which the DW and LW in 𝑒2
are respectively paired with 𝑒1 and 𝑒3. The transaction commit is a
regular epoch (𝑒4). By using TEP, the two pairs are simultaneously
persisted, as shown in Fig. 7c. As such, it is unnecessary for LogB

(or DataB) to wait for the BMT updates of LogA (or DataA), thus

removing the unnecessary ordering constraints.

Secon leverages software interfaces and hardware extensions to

implement TEP. We provide a set_log_region (start, end) interface to

initialize a log region in PM. Two memory-mapped registers in L1

cache controller record the start and end addresses of the log region,

as shown in Fig. 4. Hence, Secon easily identifies a log write to the

log region. In the CPU core, each hardware thread maintains a 1-bit

epoch-type and an 8-bit epoch counter. The epoch-type is set to “1”

on log writes (i.e., paired epoch) and “0” on transaction commits

(i.e., regular epoch). The epoch counter increases on each memory

barrier as the current epoch ID. In the L1 data cache (L1D), three

fields are added to each cacheline: (1) The 8-bit epoch-id stores the

epoch of the write. (2) The 1-bit epoch-type is the same as that in

hardware thread. (3) The 1-bit log-flag denotes whether the write

is a log write (“1” means yes). Using an 8-bit epoch-id is sufficient

since most transactions have 5–50 epochs in practice [16]. If the

epoch-id overflows, Secon persists all transaction writes in L1D,

and resets the next epoch-id to 0.

Secon adds a TEP manager in the L1 cache controller to control

the write order. Inside the TEP manager, a buffer table stores: (1)

The 48-bit physical address (Addr) of the data cacheline waiting

for its dependent cachelines to persist. (2) An 8-bit ACK counter

that increases upon persisting a cacheline and decreases upon re-

ceiving an ACK from the memory controller (MC). Each <Addr,

ACK Counter> entry belongs to a hardware thread. The local table

stores the physical addresses of cachelines waiting to be persisted.

To handle the case that a log cacheline is evicted to MC but its

BMT root has not been updated, we use a log state table to store

the epoch-ids of evicted log cachelines to avoid that the data is

persisted before updating the BMT root of the data’s log. Once the

ACK of the log cacheline is received from MC, the epoch-id entry

­1.�Flush�a­
­2.�Flush�b­
­1.�Flush�a­
­2.�Flush�b­

­1.�Flush�a­
­2.�Flush�b­
­1.�Flush�a­
­2.�Flush�b­

(a) The log entries a and b are stored in the same page

(b) The log entries a and b are stored in different pages
Figure 8. The contents of the counter and BMT blocks when flush-

ing the log entries 𝑎 and 𝑏.

is deleted. Each epoch-id entry belongs to a hardware thread. In

summary, TEP only consumes less than 1KB space when using 16

hardware threads, a 32KB L1D, and a 40-entry local table.

During transaction processing, when persisting a data cacheline,

e.g., 𝑑 , Secon creates an entry in the buffer table, stores the physical
line address in its Addr field, and persists the cachelines that 𝑑
depends on. There are two cases to persist the dependent cachelines:

Case1: The epoch-type of 𝑑 is paired epoch. 𝑑 is persisted only
after persisting its corresponding log cacheline. Supposing that the

epoch-id of 𝑑 is 𝑥 . The TEP manager simultaneously searches: (1)
The log state table for an entry whose epoch-id is equal to 𝑥 − 1. (2)
The L1D for a cacheline (e.g., 𝑐) whose epoch-id is equal to 𝑥 − 1

and log-flag is equal to “1”. If an entry is found in the log state table,

Secon persists 𝑑 after releasing this entry. Otherwise, Secon persists
𝑐 before 𝑑 . The search process is very fast since all entries in the
log state table and all the L1D cachelines are checked in parallel,

which only consumes several cycles for tag matching.

Case2: The epoch-type of 𝑑 is regular epoch. Secon persists

all cachelines whose epoch-ids are smaller than 𝑥 . Once the ACK
counter is equal to 0, 𝑑 is persisted.

3.4 Write Reduction for Security Metadata

The write-through approach is efficient to atomically persist data

and its security metadata for each write, which however increases

the write traffic. To reduce the metadata writes, Secon proposes

two schemes as follows to reduce the counter and BMT writes.

3.4.1 Co-locate Log and Counter. In Secon, the undo log entry

contains an 8-bit thread ID (TID), a 16-bit transaction ID (TxID), a

48-bit data address (Addr), and an 8B word to record the old data.

The size of an undo log entry is 18B. For each cacheline write, only

the 7-bit minor-counter is updated if the minor-counter does not

overflow. Hence, Secon co-locates the minor counter with the log

entry in one cacheline to avoid consuming extra cachelines to write

counters, thus reducing the write traffic. To achieve this, we add a

“mctr” field in the log entry to store the minor-counter, as shown in

the “Log Region” in Fig. 4. If the write is a log write, the MC adds

the minor-counter to the log entry before persisting the memory

tuple. If the minor-counter overflows, Secon writes the 64B counter

block to ensure that the counter in PM is at the newest state.

3.4.2 Coalesce BMT Blocks. We explore and exploit the spa-

tial locality of BMT blocks to reduce the write traffic of BMT. As

mentioned in § 2.2, the first-level BMT blocks cover 8 pages. Hence,

the data in these 8 pages will persist the same BMT block to PM,

causing high write redundancy. As logs are stored in a continuous
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log region with good spatial locality, the same BMT block will be

frequently persisted when flushing log entries. We observe that

regardless of whether the data are stored in the same page or in dif-

ferent pages (within 8 pages), the latter BMT block updates always

include the contents of the former BMT block updates. Specifically,

as shown in Fig. 8, when processing log entries 𝑎 and 𝑏 in an arbi-
trary order, the BMT block finally contains the updated CMACs of

𝑎 and 𝑏 when the two logs are stored in the same page or different
pages. Based on this observation, Secon coalesces the BMT blocks:

once a BMT block is added to the WPQ, Secon searches the WPQ

for a BMT block whose physical address is the same as the coming

one. If found, Secon deletes the former BMT block since the latter

one already contains all the updates, thus reducing the BMT writes.

4 Performance Evaluation

4.1 Methodology

We use the cycle-accurate Gem5 simulator [4] with NVMain [18]

to implement and evaluate Secon. We model Gem5 to simulate a

multi-core PM system. Table 1 shows the system configurations.

We use five micro-benchmarks and two macro-benchmarks for

evaluation. Themicro-benchmarks are widely used in existing NVM

systems [9, 13, 27]. The value sizes are set to 256B:

• Array. Swap two random entries in a 1GB array.

• Queue. Enqueue/dequeue random entries in a 1GB queue.

• Btree. Insert/delete random nodes in a 1GB B-tree.

• Hash. Insert/delete random items in a 1GB hash table.

• RBtree. Insert/delete random nodes in a 1GB red-black tree.

The macro-benchmarks are adopted from WHISPER [16]:

• YCSB. Cloud benchmark. 100% update.

• TPCC. OLTP benchmark. Using the New-Order transaction.

We compare our proposed Secon with the following designs:

• An ideal write-back scheme (WB). WB employs a large

battery backed write-back cache to store security metadata without

the overheads of BMT updates and extra metadata writes.

• Awrite-through scheme (WT).WTemploys awrite-through

metadata cache, in which each memory write and security metadata

are atomically written to memory after the BMT root is updated.

• The state-of-the-art design (SuperMem [27]). Our BMT

coalescing scheme is applied to SuperMem to ensure data integrity.

4.2 Transaction Latency and Throughput

4.2.1 Single-core Performance. Fig. 9 shows the execution la-

tencies of micro-benchmarks. The results are normalized to WB.

WT shows 3× higher latency than WB, since WT triples the mem-

ory writes and puts the expensive BMT update on the critical path

of transaction execution. Compared with WT, SuperMem reduces

Table 1. Configurations of the simulation system.

Processor

CPU 6 cores, X86-64, out-of-order, 2 GHz

L1 Cache Private, 64KB, 8-way, 2 cycles

L2 Cache Private, 256KB, 8-way, 12 cycles

LLC Shared, 8MB, 8-way, 30 cycles

Counter Cache 256KB, 8-way, LRU, 8 cycles [27]

BMT Cache 256KB, 8-way, LRU, 8 cycles

Memory Controller FRFCFS, 32 entries of WPQ

Backend Operations En/decryption and BMT hash: 40ns [14]

Persistent Memory

Capacity 16GB Phase-change memory (PCM)

Latency Model tRCD/tCL/tCWD/tFAW/tWTR/tWR =

48/15/13/50/7.5/300 ns [27]

the execution latency by 26% due to using its metadata coalescing

and cross-bank writes. Secon improves performance by 41% over

SuperMem on average, due to using our scalable metadata cache to

write the memory tuple in advance to accelerate the processing of

independent write requests. To demonstrate the efficiency of TEP,

we modify the micro-benchmarks to allow one transaction to con-

tain 1–16 operations to increase the transaction size and memory

barriers. The results show that Secon further reduces the trans-

action execution latency by 14% on average due to using paired

epochs to mitigate ordering constraints. For example, the execution

latency of Hash with 16 operations decreases by 24% compared

with the 1-operation configuration.

4.2.2 Multi-core Performance. Fig. 11 shows the transaction

throughput on macro-benchmarks using different numbers of CPU

cores. The results are normalized to WB using 1 core. Compared

with SuperMem, Secon improves the throughput by 19%/43% on

TPCC/YCSB, since Secon pre-persists the memory tuples to improve

the scalability of the metadata cache.

4.3 Write Traffic

Fig. 10 shows the numbers of writes to PM on micro-benchmarks,

which are normalized to WB. WT incurs 3× writes than WB due to

writing ciphertext, counter, and the first-level BMT blocks for each

write. Secon reduces the writes by 32% over WT due to coalescing

the counter and BMT writes. SuperMem also merges metadata to

reduce memory writes. When the number of operations in a transac-

tion increases from 1 to 16, Secon and SuperMem slightly decrease

the write traffic. Fig. 12 shows that when increasing the value size

from 64B to 1024B in the micro-benchmarks, Secon reduces the

memory writes by 17% to 47% than WT since the increase of the

spatial locality reduces the amount of metadata writes.
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Figure 13. The effects of BMT hashing latency on transaction

latency and throughput.

Figure 14. The normalized write traffic in different WPQ sizes.

4.4 Sensitivity Study

4.4.1 BMTHashing Latency. We study how the hashing latency

in BMT update impacts the transaction performance. Prior designs

set the hashing latency to different numbers, such as 40ns [14] and

80ns [8]. We vary the hashing latencies to {40, 60, 80, 100}ns, and

present the results on Hash and YCSB (other results are not shown

here due to the limited space). Fig. 13 shows the growth rate of

execution latency and the decrease rate of throughput compared

with the 40ns latency. When increasing the hashing latency, Secon

only increases the execution latency by less than 5%, and decreases

the throughput by less than 7%, due to writing the memory tuples in

advance and moving the expensive BMT update to the background.

Therefore, Secon is not sensitive to the hashing latency. However,

WT and SuperMem are sensitive to the hashing latency due to

waiting for the update of BMT root. When setting the hashing

latency to 100ns, they respectively slow down the execution by 34%

and 38%, and decrease the throughput by 31% and 36%.

4.4.2 Write Pending Queue Size. We study how the size (i.e.,

the number of entries) of the write pending queue (WPQ) affects the

write traffic by changing the WPQ size from 8 to 128 entries. The

results are normalized to the 8-entry WPQ. Fig. 14 shows that when

increasing the size from 8 to 32 entries, thewrite traffic of Array and

RBtree sharply decrease since they have good localities to coalesce

many BMT blocks in the WPQ. From the experimental results,

we learn that reserving a 32-entry WPQ is sufficient to reduce

the metadata writes, while not heavily increasing the hardware

overhead of WPQ in the memory controller.

5 Conclusion
This paper proposes Secon to efficiently bridge the gap between

crash consistency and security for persistent memory systems.

Secon leverages a scalable write-through security metadata cache to

atomically pre-persist the data and its security metadata, thus elimi-

nating unnecessary write stalls in the memory controller. Moreover,

Secon leverages a transaction-specific epoch persistency model to

mitigate the ordering constraints in transactions. Secon further co-

locates the logs with counters and coalesces BMT blocks to reduce

the metadata writes. Experimental results demonstrate that Secon

outperforms the state-of-the-art schemes on transaction latency,

throughput, and write traffic.
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