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id=1 … id = n

64-bit unit

Counter track bitmap

ADR [1]

①

1

[Example] The counter and CMAC of current write request are respectively mc1 and CMAC1

[1] The Asynchronous DRAM Refresh domain, in which the internal data survive a crash or power failure
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Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash
• Pending BMT update queue (In MC) – which CMAC is updated

• Counter track bitmap (In ADR[1] of MC) – which counter is updated

Stores physical 
addresses of CMACs

Each bit records which 
minor-counter is updated

Records the id[2] of the unit 
in counter track bitmap

Addr_CMAC1

48-bit
…

Pending BMT 

update queue

id=1 … id = n

64-bit unit

Counter track bitmap

ADR [1]

CMAC1 1 … CMAC8

Mc mc1 mc64
… Mc mc1 mc64

……

First-level CMACs
① ②

[1] The Asynchronous DRAM Refresh domain, in which the internal data survive a crash or power failure
[2] Only using 54 bits of a 64-bit CMAC is sufficiently secure (Morphable Counters@MICRO’18)

1

64-bit major counter 7-bit minor counter

[Example] The counter and CMAC of current write request are respectively mc1 and CMAC1
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Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash
• Pending BMT update queue (In MC) – which CMAC is updated

• Counter track bitmap (In ADR[1] of MC) – which counter is updated

Stores physical 
addresses of CMACs

Each bit records which 
minor-counter is updated

Records the id[2] of the unit 
in counter track bitmap

Addr_CMAC1

48-bit
…

Pending BMT 

update queue

id=1 … id = n

64-bit unit

Counter track bitmap

ADR [1]

CMAC1 1 … CMAC8

Mc mc1 mc64
… Mc mc1 mc64

……

First-level CMACs
① ② ③

[1] The Asynchronous DRAM Refresh domain, in which the internal data survive a crash or power failure
[2] Only using 54 bits of a 64-bit CMAC is sufficiently secure (Morphable Counters@MICRO’18)

1

64-bit major counter 7-bit minor counter

[Example] The counter and CMAC of current write request are respectively mc1 and CMAC1

Persist 

<data, counter, CMAC>
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction[1]

[1] A transaction without pre-defined write set

Unnecessary ordering constraints

Log (A) Write (A)

Log (B) Write (B)

Commit
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction[1]

[1] A transaction without pre-defined write set

Unnecessary ordering constraints

• Log (A) and Log (B) are independent, but ordered

Log (A) Write (A)

Log (B) Write (B)

Commit
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction[1]

[1] A transaction without pre-defined write set

Unnecessary ordering constraints

• Log (A) and Log (B) are independent, but ordered

• Write (A) and Write (B) are independent, but ordered

Log (A) Write (A)

Log (B) Write (B)

Commit
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction[1]

[1] A transaction without pre-defined write set

Unnecessary ordering constraints

• Log (A) and Log (B) are independent, but ordered

• Write (A) and Write (B) are independent, but ordered

➔ LogB (or DataB) waits for the BMT updates of LogA (or DataA)

Log (A) Write (A)

Log (B) Write (B)

Commit
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

[1] Memory persistency@ISCA’14

Epoch Persistency Model [1]

epoch 1

epoch 2

epoch 3

epoch 4

• A program is divided by memory barrier (e.g., sfence)

• All writes in one epoch are persisted w/o order

• Different epochs are persisted in order 
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

[1] Memory persistency@ISCA’14
[2] A transaction with pre-defined write set

Epoch Persistency Model [1]

epoch 1

epoch 2

epoch 3

epoch 4

• A program is divided by memory barrier (e.g., sfence)

• All writes in one epoch are persisted w/o order

• Different epochs are persisted in order 

➔ Efficient in static transactions[2] since only one barrier is needed
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

[1] Memory persistency@ISCA’14
[2] A transaction with pre-defined write set

Epoch Persistency Model [1]

epoch 1

epoch 2

epoch 3

epoch 4

• A program is divided by memory barrier (e.g., sfence)

• All writes in one epoch are persisted w/o order

• Different epochs are persisted in order 

➔ Efficient in static transactions[2] since only one barrier is needed

➔ Inefficient in dynamic transactions due to many barriers
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

[1] Memory persistency@ISCA’14
[2] A transaction with pre-defined write set

Epoch Persistency Model [1]

epoch 1

epoch 2

epoch 3

epoch 4

• A program is divided by memory barrier (e.g., sfence)

• All writes in one epoch are persisted w/o order

• Different epochs are persisted in order 

➔ Efficient in static transactions[2] since only one barrier is needed

➔ Inefficient in dynamic transactions due to many barriers

Log (A) Write (A)

Log (B) Write (B)

Commit
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

• Paired epoch: Two adjacent epochs are paired
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Log (A) Write (A)

Log (B) Write (B)

Commit

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Log (A)

Log (B)

Log (A) Write (A)

Log (B) Write (B)

Commit

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Log (A) Write (A)

Log (B) Write (B)

Commit

Log (A) Write (A)

Log (B) Write (B)

Commit

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Log (A) Write (A)

Log (B) Write (B)

Commit

Log (A) Write (A)

Log (B) Write (B)

Commit

Faster

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2
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Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Log (A) Write (A)

Log (B) Write (B)

Commit

Log (A) Write (A)

Log (B) Write (B)

Commit

Faster

➔ Efficient in both static and dynamic transactions

➔ Minimize ordering constraints

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2
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Transaction-Specific Epoch Persistency Model

Memory Controller

tag data

CPU Core

L1 Data Cache
L1 Cache Controller

TEP Manager
Addr ACK Counter

Log State 
Table

Epoch Counter

Buffer Table

Last Level Cache

Secure Persistent Memory

tag data

Epoch-type

memory-mapped registers

epoch-id epoch-type log-flag

L1 cacheline metadata

Epoch ID

local table

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT 

A dynamic transaction

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Pair 2

Implementations
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Security Metadata Write-Reduction Schemes
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Security Metadata Write-Reduction Schemes

Co-locate log and counter
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Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit   16-bit    48-bit     1-word

undo log entry

7-bit minor-counter

When writing data to PM

Write 1

Write 2
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Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit   16-bit    48-bit     1-word

undo log entry

7-bit minor-counter

Write a minor-counter together with a log entry

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1
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Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit   16-bit    48-bit     1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1
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Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit   16-bit    48-bit     1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

Log a and b are in 
the same pages

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACab CMAC2

mcaMc mcb mc64

mca mcb

mca mcb

mc1Mc mc2 mc64

mc1 mc2
mc1 mc2

-1. Flush a-

-2. Flush b-
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Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit   16-bit    48-bit     1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

Log a and b are in 
the same pages

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACab CMAC2

mcaMc mcb mc64

mca mcb

mca mcb

mc1Mc mc2 mc64

mc1 mc2
mc1 mc2

-1. Flush a-

-2. Flush b-
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Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit   16-bit    48-bit     1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

Log a and b are in 
the same pages

Log a and b are in 
different pages

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACab CMAC2

mcaMc mcb mc64

mca mcb

mca mcb

mc1Mc mc2 mc64

mc1 mc2
mc1 mc2

-1. Flush a-

-2. Flush b-

  

 

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACa CMACb

mcaMc mc2 mc64

mca mc2

mca mc2

mcbMc mc2 mc64

mcb mc2

mcb mc2
-1. Flush a-

-2. Flush b-
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Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit   16-bit    48-bit     1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

Log a and b are in 
the same pages

Log a and b are in 
different pages

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACab CMAC2

mcaMc mcb mc64

mca mcb

mca mcb

mc1Mc mc2 mc64

mc1 mc2
mc1 mc2

-1. Flush a-

-2. Flush b-

  

 

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACa CMACb

mcaMc mc2 mc64

mca mc2

mca mc2

mcbMc mc2 mc64

mcb mc2

mcb mc2
-1. Flush a-

-2. Flush b-
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Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit   16-bit    48-bit     1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

Log a and b are in 
the same pages

Log a and b are in 
different pages

Exploit the spatial locality to merge BMT writes 

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACab CMAC2

mcaMc mcb mc64

mca mcb

mca mcb

mc1Mc mc2 mc64

mc1 mc2
mc1 mc2

-1. Flush a-

-2. Flush b-

  

 

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACa CMACb

mcaMc mc2 mc64

mca mc2

mca mc2

mcbMc mc2 mc64

mcb mc2

mcb mc2
-1. Flush a-

-2. Flush b-
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Performance Evaluation
• Model Secon using Gem5 and NVMain

Benchmark Description

Array Swap two random entries in an array

Queue Enqueue/dequeue random entries in a queue

Btree Insert/delete random nodes in a B-tree

Hash Insert/delete random items in a hash table

RBtree Insert/delete random nodes in a red-black tree

YCSB Cloud benchmark. 100% update

TPCC OLTP benchmark. Use the New-Order transaction

Design Description

WB
An ideal write-back 

scheme

WT
A standard write-through

scheme

SuperMem

[MICRO’19]

A write-optimized write-

through scheme using 

our BMT coalescing

Secon Our proposed schemes
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Transaction Throughput

0

1

2

3

4

5

1 core 2 cores 4 cores 6 cores

WB WT SuperMem Secon

0

1

2

3

4

1 core 2 cores 4 cores 6 cores

N
o

rm
al

iz
ed

 
Th

ro
u

gh
p

u
t

WB WT SuperMem Secon

YCSB TPCC

43% improvement over SuperMem

• Move BMT update to the background

• Eliminate unnecessary ordering constraints

19% improvement over SuperMem



89

0
0.5

1
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3.5

Array Btree Hash Queue RBtree Gmean

WB WT SuperMem Secon

0
0.5

1
1.5

2
2.5
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3.5

Array Btree Hash Queue RBtree Gmean

WB WT SuperMem Secon

Write Traffic
N

o
rm
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iz

ed
 

W
ri

te
 T

ra
ff

ic

64B value size 1024B value size

17% 47%

• Log and counter co-locating

• BMT block coalescing



90

Conclusion

• Security and crash consistency are important for persistent memory

• Existing approaches suffer from low scalability

• Our solution: Secon
• Scalable write-through security metadata cache

• Move BMT update to the background

• Transaction-specific epoch persistency model 
• Minimize ordering constraints

• Security metadata write-reduction schemes
• Enhance endurance
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