
Scalable Crash Consistency for
Secure Persistent Memory

Ming Zhang, Yu Hua, Xuan Li, Hao Xu

Huazhong University of Science and Technology, China

1

Persistent Memory (PM)

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Memory Bus

Non-volatility:

Data are not lost

2

Persistent Memory (PM)

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Memory Bus

Non-volatility:

Data are not lost

① Security

② Crash Consistency

Requirements

3

Security for PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Trusted[1]

Untrusted

[1] SECRET@DAC’16, SCA@HPCA’18, SuperMem@MICRO’19, Bonsai Merkle Forests@MICRO’21

4

Security for PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Bus snooping attack

Trusted[1]

Untrusted

[1] SECRET@DAC’16, SCA@HPCA’18, SuperMem@MICRO’19, Bonsai Merkle Forests@MICRO’21

5

Security for PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Bus snooping attack

Stolen DIMM attack

Trusted[1]

Untrusted

[1] SECRET@DAC’16, SCA@HPCA’18, SuperMem@MICRO’19, Bonsai Merkle Forests@MICRO’21

6

Security for PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Bus snooping attack

Stolen DIMM attack

Trusted[1]

Untrusted

[1] SECRET@DAC’16, SCA@HPCA’18, SuperMem@MICRO’19, Bonsai Merkle Forests@MICRO’21

Confidentiality

7

Security for PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Bus snooping attack

Stolen DIMM attack

Trusted[1]

Untrusted

CachelineCounter

AES
XOR

Ciphertext

Counter-Mode Encryption

One-time pad

Confidentiality

Plaintext

Confidentiality

[1] SECRET@DAC’16, SCA@HPCA’18, SuperMem@MICRO’19, Bonsai Merkle Forests@MICRO’21

8

Security for PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Bus snooping attack

Stolen DIMM attack

Trusted[1]

Untrusted

CachelineCounter

AES
XOR

Ciphertext

Counter-Mode Encryption

One-time pad

Confidentiality

Plaintext

Confidentiality

Mc mc1 mc64
…

64-bit major counter 7-bit minor counter

[1] SECRET@DAC’16, SCA@HPCA’18, SuperMem@MICRO’19, Bonsai Merkle Forests@MICRO’21

9

Security for PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Bus snooping attack

Stolen DIMM attack

Trusted[1]

Untrusted

CachelineCounter

AES
XOR

Ciphertext

Counter-Mode Encryption

One-time pad

Confidentiality

Plaintext

Confidentiality

Mc mc1 mc64
…

64-bit major counter 7-bit minor counter

[1] SECRET@DAC’16, SCA@HPCA’18, SuperMem@MICRO’19, Bonsai Merkle Forests@MICRO’21

Tampering attack

10

Security for PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Bus snooping attack

Stolen DIMM attack

Trusted[1]

Untrusted

CachelineCounter

AES
XOR

Ciphertext

Counter-Mode Encryption

One-time pad

Confidentiality

Plaintext

Confidentiality

Mc mc1 mc64
…

64-bit major counter 7-bit minor counter

[1] SECRET@DAC’16, SCA@HPCA’18, SuperMem@MICRO’19, Bonsai Merkle Forests@MICRO’21

Tampering attack

Integrity

11

Security for PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Bus snooping attack

Stolen DIMM attack

Trusted[1]

Untrusted

CachelineCounter

AES
XOR

Ciphertext

Counter-Mode Encryption

One-time pad

Bonsai Merkle Tree

On-chip root

…

First-level
BMT block

8B CMAC[2]

Counters

64B CTR

…

Tampering attack

Confidentiality Integrity

Plaintext

Confidentiality

Integrity

[1] SECRET@DAC’16, SCA@HPCA’18, SuperMem@MICRO’19, Bonsai Merkle Forests@MICRO’21
[2] Counter message authentication code

Mc mc1 mc64
…

64-bit major counter 7-bit minor counter

12

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Counter

Cache

BMT

Cache

Whole data {

Write A;

Write B;

}

13

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

Counter

Cache

BMT

Cache

Whole data {

Write A;

Write B;

}

14

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

Whole data {

Write A;

Write B;

}

1) Only data is persisted

15

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

Whole data {

Write A;

Write B;

}

1) Only data is persisted

Can’t be decrypted or verified

16

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

Whole data {

Write A;

Write B;

}

1) Only data is persisted

Can’t be decrypted or verified

Inconsistency!

17

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

CTR

2) Data + counter are persisted Whole data {

Write A;

Write B;

}

18

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

CTR

2) Data + counter are persisted

Can’t be verified

Whole data {

Write A;

Write B;

}

19

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

CTR

2) Data + counter are persisted

Can’t be verified

Whole data {

Write A;

Write B;

}
Inconsistency!

20

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

3) Data + CMAC are persisted

CMAC

Whole data {

Write A;

Write B;

}

21

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

3) Data + CMAC are persisted

Can’t be decrypted

CMAC

Whole data {

Write A;

Write B;

}

22

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

3) Data + CMAC are persisted

Can’t be decrypted

CMAC

Whole data {

Write A;

Write B;

}
Inconsistency!

23

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

4) Part of data are persisted

CMACCTR

Whole data {

Write A;

Write B;

}

24

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

4) Part of data are persisted

Partial updates

CMACCTR

Whole data {

Write A;

Write B;

}

25

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

4) Part of data are persisted

Partial updates

Inconsistency!

CMACCTR

Whole data {

Write A;

Write B;

}

26

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

4) Part of data are persisted

Partial updates

Inconsistency!

CMAC

Guarantee failure-atomicity for
✓ A group of data

✓ Data + counter + CMAC

CTR

Whole data {

Write A;

Write B;

}

27

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

4) Part of data are persisted

Partial updates

Inconsistency!

CMAC

Guarantee failure-atomicity for
✓ A group of data

✓ Data + counter + CMAC

CTR

Whole data {

Write A;

Write B;

}

TX_BEGIN {
Log A; persist[1]

Write A; persist
Log B; persist
Write B; persist

} TX_COMMIT

[1] Persist instruction sequence, e.g., clwb + sfence

Durable
Transaction
with
write-ahead
logging

28

Crash Consistency for Secure PM

Core

L1

Memory Controller

L2

LLC

Core

L1

L2

…

On-Chip Resources

PM

A

A B

Counter

Cache

BMT

Cache

4) Part of data are persisted

Partial updates

Inconsistency!

CMAC

Guarantee failure-atomicity for
✓ A group of data

✓ Data + counter + CMAC

CTR

Whole data {

Write A;

Write B;

}

TX_BEGIN {
Log A; persist[1]

Write A; persist
Log B; persist
Write B; persist

} TX_COMMIT

?
[1] Persist instruction sequence, e.g., clwb + sfence

Durable
Transaction
with
write-ahead
logging

29

State-of-The-Art

Design Confidentiality Integrity
Atomicity for a

group of updates

Atomicity of data and

its security metadata

SCA@HPCA’18 ✓ ✓ Data + Counter

SuperMem@MICRO’19 ✓ ✓ Data + Counter

30

State-of-The-Art

SCA@HPCA’18

Design Confidentiality Integrity
Atomicity for a

group of updates

Atomicity of data and

its security metadata

SCA@HPCA’18 ✓ ✓ Data + Counter

SuperMem@MICRO’19 ✓ ✓ Data + Counter

➢ Write-back counter cache

➢ New primitives required

• CounterAtomicity

• counter_cache_writeback()

➔ Limited portability

31

State-of-The-Art

SCA@HPCA’18

Design Confidentiality Integrity
Atomicity for a

group of updates

Atomicity of data and

its security metadata

SCA@HPCA’18 ✓ ✓ Data + Counter

SuperMem@MICRO’19 ✓ ✓ Data + Counter

➢ Write-back counter cache

➢ New primitives required

• CounterAtomicity

• counter_cache_writeback()

➔ Limited portability

Unencrypted PM

App

32

State-of-The-Art

SCA@HPCA’18

Design Confidentiality Integrity
Atomicity for a

group of updates

Atomicity of data and

its security metadata

SCA@HPCA’18 ✓ ✓ Data + Counter

SuperMem@MICRO’19 ✓ ✓ Data + Counter

➢ Write-back counter cache

➢ New primitives required

• CounterAtomicity

• counter_cache_writeback()

➔ Limited portability

Unencrypted PM Encrypted PM

App

33

State-of-The-Art

SCA@HPCA’18 SuperMem@MICRO’19

Design Confidentiality Integrity
Atomicity for a

group of updates

Atomicity of data and

its security metadata

SCA@HPCA’18 ✓ ✓ Data + Counter

SuperMem@MICRO’19 ✓ ✓ Data + Counter

➢ Write-back counter cache

➢ New primitives required

• CounterAtomicity

• counter_cache_writeback()

➔ Limited portability

Unencrypted PM Encrypted PM

App

➢ Write-through counter cache

➢ A register appends <data+counter> to write queue

• Application transparent → Good portability

34

State-of-The-Art

SCA@HPCA’18 SuperMem@MICRO’19

Design Confidentiality Integrity
Atomicity for a

group of updates

Atomicity of data and

its security metadata

SCA@HPCA’18 ✓ ✓ Data + Counter

SuperMem@MICRO’19 ✓ ✓ Data + Counter

➢ Write-back counter cache

➢ New primitives required

• CounterAtomicity

• counter_cache_writeback()

➔ Limited portability

Unencrypted PM Encrypted PM

App

➢ Write-through counter cache

➢ A register appends <data+counter> to write queue

• Application transparent → Good portability

Time

DataA

1st-level 2nd-level Root...Counter
CMAC

DataA
Counter
CMAC

Persist to write pending queue

Process DataB

Register busy Register busy to free

Update BMT

➔ Limited scalability

35

Secon

• Security and crash consistency for PM

• Goal

Design Confidentiality Integrity
Atomicity for a

group of updates

Atomicity of data and its

security metadata

SCA@HPCA’18 ✓ ✓ Data + Counter

SuperMem@MICRO’19 ✓ ✓ Data + Counter

Our Secon ✓ ✓ ✓ Data + Counter + CMAC

36

Memory Controller

tag data

CPU Core

L1 Data Cache
L1 Cache Controller

TEP Manager
Addr ACK Counter

Log State
Table

Epoch Counter

Buffer Table

Last Level Cache

Write Pending Queue

Counter Cache

BMT Cache

data counter CMAC

Pre-persist

Secure Processor

Secure Persistent Memory
Log Region (Undo Log Entries)

TID TxID Addr Datamctr

AES
CounterOTPPlaintext

Ciphertext

7-bit 8-bit 16-bit 48-bit 1-word

ADR Domain

tag data

Epoch-type

memory-mapped registers

epoch-id epoch-type log-flag

L1 cacheline metadata

Epoch ID

Pending BMT
Update Queue

Counter Track Bitmap

Data Region

local table

Architecture

• Scalable write-through
security metadata cache
• Move BMT update to the background

• Transaction-specific epoch
persistency model
• Minimize ordering constraints

between logs and data

• Security metadata write-
reduction schemes
• Mitigate the writes caused by

counters and CMACs

37

Memory Controller

tag data

CPU Core

L1 Data Cache
L1 Cache Controller

TEP Manager
Addr ACK Counter

Log State
Table

Epoch Counter

Buffer Table

Last Level Cache

Write Pending Queue

Counter Cache

BMT Cache

data counter CMAC

Pre-persist

Secure Processor

Secure Persistent Memory
Log Region (Undo Log Entries)

TID TxID Addr Datamctr

AES
CounterOTPPlaintext

Ciphertext

7-bit 8-bit 16-bit 48-bit 1-word

ADR Domain

tag data

Epoch-type

memory-mapped registers

epoch-id epoch-type log-flag

L1 cacheline metadata

Epoch ID

Pending BMT
Update Queue

Counter Track Bitmap

Data Region

local table

Architecture

• Scalable write-through
security metadata cache
• Move BMT update to the background

• Transaction-specific epoch
persistency model
• Minimize ordering constraints

between logs and data

• Security metadata write-
reduction schemes
• Mitigate the writes caused by

counters and CMACs

38

Memory Controller

tag data

CPU Core

L1 Data Cache
L1 Cache Controller

TEP Manager
Addr ACK Counter

Log State
Table

Epoch Counter

Buffer Table

Last Level Cache

Write Pending Queue

Counter Cache

BMT Cache

data counter CMAC

Pre-persist

Secure Processor

Secure Persistent Memory
Log Region (Undo Log Entries)

TID TxID Addr Datamctr

AES
CounterOTPPlaintext

Ciphertext

7-bit 8-bit 16-bit 48-bit 1-word

ADR Domain

tag data

Epoch-type

memory-mapped registers

epoch-id epoch-type log-flag

L1 cacheline metadata

Epoch ID

Pending BMT
Update Queue

Counter Track Bitmap

Data Region

local table

Architecture

• Scalable write-through
security metadata cache
• Move BMT update to the background

• Transaction-specific epoch
persistency model
• Minimize ordering constraints

between logs and data

• Security metadata write-
reduction schemes
• Mitigate the writes caused by

counters and CMACs

39

Memory Controller

tag data

CPU Core

L1 Data Cache
L1 Cache Controller

TEP Manager
Addr ACK Counter

Log State
Table

Epoch Counter

Buffer Table

Last Level Cache

Write Pending Queue

Counter Cache

BMT Cache

data counter CMAC

Pre-persist

Secure Processor

Secure Persistent Memory
Log Region (Undo Log Entries)

TID TxID Addr Datamctr

AES
CounterOTPPlaintext

Ciphertext

7-bit 8-bit 16-bit 48-bit 1-word

ADR Domain

tag data

Epoch-type

memory-mapped registers

epoch-id epoch-type log-flag

L1 cacheline metadata

Epoch ID

Pending BMT
Update Queue

Counter Track Bitmap

Data Region

local table

Architecture

• Scalable write-through
security metadata cache
• Move BMT update to the background

• Transaction-specific epoch
persistency model
• Minimize ordering constraints

between logs and data

• Security metadata write-
reduction schemes
• Mitigate the writes caused by

counters and CMACs

40

Time

DataA

1st-level 2nd-level Root...Counter
CMAC

DataA
Counter
CMAC

Persist to write pending queue

Process DataB

Register busy Register busy to free

Update BMT

Scalable Write-Through Security Metadata Cache

Memory Controller

41

Time

DataA

1st-level 2nd-level Root...Counter
CMAC

DataA
Counter
CMAC

Persist to write pending queue

Process DataB

Register busy Register busy to free

Update BMT

Scalable Write-Through Security Metadata Cache
• Observation: PM always has a consistent copy of data by logging

Memory Controller

42

Time

DataA

1st-level 2nd-level Root...Counter
CMAC

DataA
Counter
CMAC

Persist to write pending queue

Process DataB

Register busy Register busy to free

Update BMT

Scalable Write-Through Security Metadata Cache
• Observation: PM always has a consistent copy of data by logging

• In the log region or data region

Memory Controller

43

Time

DataA

1st-level 2nd-level Root...Counter
CMAC

DataA
Counter
CMAC

Persist to write pending queue

Process DataB

Register busy Register busy to free

Update BMT

DataA
Counter
CMAC

Scalable Write-Through Security Metadata Cache
• Observation: PM always has a consistent copy of data by logging

• In the log region or data region

• Persist the tuple of <data, counter, CMAC> in advance

Memory Controller

Persist the tuple to WPQ in advance

DataA
Counter
CMAC

44

Time

DataA

1st-level 2nd-level Root...Counter
CMAC

DataA
Counter
CMAC

Persist to write pending queue

Process DataB

Register busy Register busy to free

Update BMT

DataA
Counter
CMAC

Scalable Write-Through Security Metadata Cache
• Observation: PM always has a consistent copy of data by logging

• In the log region or data region

• Persist the tuple of <data, counter, CMAC> in advance
• Release the register early to process the next independent write request

Early release

Memory Controller

Persist the tuple to WPQ in advance

DataA
Counter
CMAC

45

Time

DataA

1st-level 2nd-level Root...Counter
CMAC

DataA
Counter
CMAC

Persist to write pending queue

Process DataB

Register busy Register busy to free

Update BMT

DataA
Counter
CMAC

Scalable Write-Through Security Metadata Cache
• Observation: PM always has a consistent copy of data by logging

• In the log region or data region

• Persist the tuple of <data, counter, CMAC> in advance
• Release the register early to process the next independent write request

Early release

Memory Controller

Persist the tuple to WPQ in advance

Process DataB
DataA

Counter
CMAC

46

Time

DataA

1st-level 2nd-level Root...Counter
CMAC

DataA
Counter
CMAC

Persist to write pending queue

Process DataB

Register busy Register busy to free

Update BMT

DataA
Counter
CMAC

Scalable Write-Through Security Metadata Cache
• Observation: PM always has a consistent copy of data by logging

• In the log region or data region

• Persist the tuple of <data, counter, CMAC> in advance
• Release the register early to process the next independent write request

• Move BMT update to the background

Early release

Memory Controller

Persist the tuple to WPQ in advance

Process DataB

1st-level 2nd-level Root... Background BMT update

DataA
Counter
CMAC

47

Time

DataA

1st-level 2nd-level Root...Counter
CMAC

DataA
Counter
CMAC

Persist to write pending queue

Process DataB

Register busy Register busy to free

Update BMT

DataA
Counter
CMAC

Scalable Write-Through Security Metadata Cache
• Observation: PM always has a consistent copy of data by logging

• In the log region or data region

• Persist the tuple of <data, counter, CMAC> in advance
• Release the register early to process the next independent write request

• Move BMT update to the background

Early release

Memory Controller

Persist the tuple to WPQ in advance

Process DataB

1st-level 2nd-level Root... Background BMT update

DataA
Counter
CMAC

Faster

48

Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash

49

Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash
• Pending BMT update queue (In MC) – which CMAC is updated

50

Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash
• Pending BMT update queue (In MC) – which CMAC is updated

• Counter track bitmap (In ADR[1] of MC) – which counter is updated

[1] The Asynchronous DRAM Refresh domain, in which the internal data survive a crash or power failure

51

Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash
• Pending BMT update queue (In MC) – which CMAC is updated

• Counter track bitmap (In ADR[1] of MC) – which counter is updated

[Example] The counter and CMAC of current write request are respectively mc1 and CMAC1

[1] The Asynchronous DRAM Refresh domain, in which the internal data survive a crash or power failure

52

Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash
• Pending BMT update queue (In MC) – which CMAC is updated

• Counter track bitmap (In ADR[1] of MC) – which counter is updated

①

[Example] The counter and CMAC of current write request are respectively mc1 and CMAC1

[1] The Asynchronous DRAM Refresh domain, in which the internal data survive a crash or power failure

53

Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash
• Pending BMT update queue (In MC) – which CMAC is updated

• Counter track bitmap (In ADR[1] of MC) – which counter is updated

Stores physical
addresses of CMACs

Addr_CMAC1

48-bit
…

Pending BMT

update queue

①

[Example] The counter and CMAC of current write request are respectively mc1 and CMAC1

[1] The Asynchronous DRAM Refresh domain, in which the internal data survive a crash or power failure

54

Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash
• Pending BMT update queue (In MC) – which CMAC is updated

• Counter track bitmap (In ADR[1] of MC) – which counter is updated

Stores physical
addresses of CMACs

Addr_CMAC1

48-bit
…

Pending BMT

update queue

id=1 … id = n

64-bit unit

Counter track bitmap

ADR [1]

①

1

[Example] The counter and CMAC of current write request are respectively mc1 and CMAC1

[1] The Asynchronous DRAM Refresh domain, in which the internal data survive a crash or power failure

55

Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash
• Pending BMT update queue (In MC) – which CMAC is updated

• Counter track bitmap (In ADR[1] of MC) – which counter is updated

Stores physical
addresses of CMACs

Each bit records which
minor-counter is updated

Addr_CMAC1

48-bit
…

Pending BMT

update queue

id=1 … id = n

64-bit unit

Counter track bitmap

ADR [1]

①

1

[Example] The counter and CMAC of current write request are respectively mc1 and CMAC1

[1] The Asynchronous DRAM Refresh domain, in which the internal data survive a crash or power failure

56

Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash
• Pending BMT update queue (In MC) – which CMAC is updated

• Counter track bitmap (In ADR[1] of MC) – which counter is updated

Stores physical
addresses of CMACs

Each bit records which
minor-counter is updated

Records the id[2] of the unit
in counter track bitmap

Addr_CMAC1

48-bit
…

Pending BMT

update queue

id=1 … id = n

64-bit unit

Counter track bitmap

ADR [1]

CMAC1 1 … CMAC8

Mc mc1 mc64
… Mc mc1 mc64

……

First-level CMACs
① ②

[1] The Asynchronous DRAM Refresh domain, in which the internal data survive a crash or power failure
[2] Only using 54 bits of a 64-bit CMAC is sufficiently secure (Morphable Counters@MICRO’18)

1

64-bit major counter 7-bit minor counter

[Example] The counter and CMAC of current write request are respectively mc1 and CMAC1

57

Scalable Write-Through Security Metadata Cache

• Guarantee the consistency between on-chip BMT root and off-chip counters after a crash
• Pending BMT update queue (In MC) – which CMAC is updated

• Counter track bitmap (In ADR[1] of MC) – which counter is updated

Stores physical
addresses of CMACs

Each bit records which
minor-counter is updated

Records the id[2] of the unit
in counter track bitmap

Addr_CMAC1

48-bit
…

Pending BMT

update queue

id=1 … id = n

64-bit unit

Counter track bitmap

ADR [1]

CMAC1 1 … CMAC8

Mc mc1 mc64
… Mc mc1 mc64

……

First-level CMACs
① ② ③

[1] The Asynchronous DRAM Refresh domain, in which the internal data survive a crash or power failure
[2] Only using 54 bits of a 64-bit CMAC is sufficiently secure (Morphable Counters@MICRO’18)

1

64-bit major counter 7-bit minor counter

[Example] The counter and CMAC of current write request are respectively mc1 and CMAC1

Persist

<data, counter, CMAC>

58

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction[1]

[1] A transaction without pre-defined write set

Unnecessary ordering constraints

Log (A) Write (A)

Log (B) Write (B)

Commit

59

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction[1]

[1] A transaction without pre-defined write set

Unnecessary ordering constraints

• Log (A) and Log (B) are independent, but ordered

Log (A) Write (A)

Log (B) Write (B)

Commit

60

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction[1]

[1] A transaction without pre-defined write set

Unnecessary ordering constraints

• Log (A) and Log (B) are independent, but ordered

• Write (A) and Write (B) are independent, but ordered

Log (A) Write (A)

Log (B) Write (B)

Commit

61

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction[1]

[1] A transaction without pre-defined write set

Unnecessary ordering constraints

• Log (A) and Log (B) are independent, but ordered

• Write (A) and Write (B) are independent, but ordered

➔ LogB (or DataB) waits for the BMT updates of LogA (or DataA)

Log (A) Write (A)

Log (B) Write (B)

Commit

62

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

[1] Memory persistency@ISCA’14

Epoch Persistency Model [1]

epoch 1

epoch 2

epoch 3

epoch 4

• A program is divided by memory barrier (e.g., sfence)

• All writes in one epoch are persisted w/o order

• Different epochs are persisted in order

63

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

[1] Memory persistency@ISCA’14
[2] A transaction with pre-defined write set

Epoch Persistency Model [1]

epoch 1

epoch 2

epoch 3

epoch 4

• A program is divided by memory barrier (e.g., sfence)

• All writes in one epoch are persisted w/o order

• Different epochs are persisted in order

➔ Efficient in static transactions[2] since only one barrier is needed

64

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

[1] Memory persistency@ISCA’14
[2] A transaction with pre-defined write set

Epoch Persistency Model [1]

epoch 1

epoch 2

epoch 3

epoch 4

• A program is divided by memory barrier (e.g., sfence)

• All writes in one epoch are persisted w/o order

• Different epochs are persisted in order

➔ Efficient in static transactions[2] since only one barrier is needed

➔ Inefficient in dynamic transactions due to many barriers

65

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

[1] Memory persistency@ISCA’14
[2] A transaction with pre-defined write set

Epoch Persistency Model [1]

epoch 1

epoch 2

epoch 3

epoch 4

• A program is divided by memory barrier (e.g., sfence)

• All writes in one epoch are persisted w/o order

• Different epochs are persisted in order

➔ Efficient in static transactions[2] since only one barrier is needed

➔ Inefficient in dynamic transactions due to many barriers

Log (A) Write (A)

Log (B) Write (B)

Commit

66

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

67

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

• Paired epoch: Two adjacent epochs are paired

68

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

69

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

70

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2

71

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Log (A) Write (A)

Log (B) Write (B)

Commit

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2

72

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Log (A)

Log (B)

Log (A) Write (A)

Log (B) Write (B)

Commit

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2

73

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Log (A) Write (A)

Log (B) Write (B)

Commit

Log (A) Write (A)

Log (B) Write (B)

Commit

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2

74

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Log (A) Write (A)

Log (B) Write (B)

Commit

Log (A) Write (A)

Log (B) Write (B)

Commit

Faster

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2

75

Transaction-Specific Epoch Persistency Model

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

Our Transaction-specific Epoch Persistency Model

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Log (A) Write (A)

Log (B) Write (B)

Commit

Log (A) Write (A)

Log (B) Write (B)

Commit

Faster

➔ Efficient in both static and dynamic transactions

➔ Minimize ordering constraints

• Paired epoch: Two adjacent epochs are paired

• Writes in one pair are persisted in epoch order

• Different pairs are persisted w/o order

Pair 2

76

Transaction-Specific Epoch Persistency Model

Memory Controller

tag data

CPU Core

L1 Data Cache
L1 Cache Controller

TEP Manager
Addr ACK Counter

Log State
Table

Epoch Counter

Buffer Table

Last Level Cache

Secure Persistent Memory

tag data

Epoch-type

memory-mapped registers

epoch-id epoch-type log-flag

L1 cacheline metadata

Epoch ID

local table

TX_BEGIN {
Log (A)
clwb (LogA)
sfence
Write (A)
clwb (A)

Log (B)
clwb (LogB)
sfence
Write (B)
clwb (B)
sfence

} TX_COMMIT

A dynamic transaction

epoch 1

epoch 2

epoch 3

epoch 4

Pair 1

Pair 2

Implementations

77

Security Metadata Write-Reduction Schemes

78

Security Metadata Write-Reduction Schemes

Co-locate log and counter

79

Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit 16-bit 48-bit 1-word

undo log entry

7-bit minor-counter

When writing data to PM

Write 1

Write 2

80

Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit 16-bit 48-bit 1-word

undo log entry

7-bit minor-counter

Write a minor-counter together with a log entry

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

81

Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit 16-bit 48-bit 1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

82

Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit 16-bit 48-bit 1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

Log a and b are in
the same pages

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACab CMAC2

mcaMc mcb mc64

mca mcb

mca mcb

mc1Mc mc2 mc64

mc1 mc2
mc1 mc2

-1. Flush a-

-2. Flush b-

83

Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit 16-bit 48-bit 1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

Log a and b are in
the same pages

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACab CMAC2

mcaMc mcb mc64

mca mcb

mca mcb

mc1Mc mc2 mc64

mc1 mc2
mc1 mc2

-1. Flush a-

-2. Flush b-

84

Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit 16-bit 48-bit 1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

Log a and b are in
the same pages

Log a and b are in
different pages

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACab CMAC2

mcaMc mcb mc64

mca mcb

mca mcb

mc1Mc mc2 mc64

mc1 mc2
mc1 mc2

-1. Flush a-

-2. Flush b-

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACa CMACb

mcaMc mc2 mc64

mca mc2

mca mc2

mcbMc mc2 mc64

mcb mc2

mcb mc2
-1. Flush a-

-2. Flush b-

85

Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit 16-bit 48-bit 1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

Log a and b are in
the same pages

Log a and b are in
different pages

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACab CMAC2

mcaMc mcb mc64

mca mcb

mca mcb

mc1Mc mc2 mc64

mc1 mc2
mc1 mc2

-1. Flush a-

-2. Flush b-

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACa CMACb

mcaMc mc2 mc64

mca mc2

mca mc2

mcbMc mc2 mc64

mcb mc2

mcb mc2
-1. Flush a-

-2. Flush b-

86

Security Metadata Write-Reduction Schemes

Co-locate log and counter

mc

TID TxID Addr Data

8-bit 16-bit 48-bit 1-word

undo log entry

7-bit minor-counter

Coalesce BMT blocks

Write a minor-counter together with a log entry

Log a and b are in
the same pages

Log a and b are in
different pages

Exploit the spatial locality to merge BMT writes

mc TID TxID Addr Data

undo log entryminor-counter

When writing data to PM

Write 1

Write 2

Write 1

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACab CMAC2

mcaMc mcb mc64

mca mcb

mca mcb

mc1Mc mc2 mc64

mc1 mc2
mc1 mc2

-1. Flush a-

-2. Flush b-

CMAC1 CMAC2 CMAC8

CMACa CMAC2

CMACa CMACb

mcaMc mc2 mc64

mca mc2

mca mc2

mcbMc mc2 mc64

mcb mc2

mcb mc2
-1. Flush a-

-2. Flush b-

87

Performance Evaluation
• Model Secon using Gem5 and NVMain

Benchmark Description

Array Swap two random entries in an array

Queue Enqueue/dequeue random entries in a queue

Btree Insert/delete random nodes in a B-tree

Hash Insert/delete random items in a hash table

RBtree Insert/delete random nodes in a red-black tree

YCSB Cloud benchmark. 100% update

TPCC OLTP benchmark. Use the New-Order transaction

Design Description

WB
An ideal write-back

scheme

WT
A standard write-through

scheme

SuperMem

[MICRO’19]

A write-optimized write-

through scheme using

our BMT coalescing

Secon Our proposed schemes

88

Transaction Throughput

0

1

2

3

4

5

1 core 2 cores 4 cores 6 cores

WB WT SuperMem Secon

0

1

2

3

4

1 core 2 cores 4 cores 6 cores

N
o

rm
al

iz
ed

Th

ro
u

gh
p

u
t

WB WT SuperMem Secon

YCSB TPCC

43% improvement over SuperMem

• Move BMT update to the background

• Eliminate unnecessary ordering constraints

19% improvement over SuperMem

89

0
0.5

1
1.5

2
2.5

3
3.5

Array Btree Hash Queue RBtree Gmean

WB WT SuperMem Secon

0
0.5

1
1.5

2
2.5

3
3.5

Array Btree Hash Queue RBtree Gmean

WB WT SuperMem Secon

Write Traffic
N

o
rm

al
iz

ed

W
ri

te
 T

ra
ff

ic

64B value size 1024B value size

17% 47%

• Log and counter co-locating

• BMT block coalescing

90

Conclusion

• Security and crash consistency are important for persistent memory

• Existing approaches suffer from low scalability

• Our solution: Secon
• Scalable write-through security metadata cache

• Move BMT update to the background

• Transaction-specific epoch persistency model
• Minimize ordering constraints

• Security metadata write-reduction schemes
• Enhance endurance

Thanks! Q&A

